336 research outputs found

    Wireless Network MAC Layer Performance Evaluation with Full-Duplex Capable Nodes

    Full text link

    A Comprehensive Analysis of Literature Reported Mac and Phy Enhancements of Zigbee and its Alliances

    Get PDF
    Wireless communication is one of the most required technologies by the common man. The strength of this technology is rigorously progressing towards several novel directions in establishing personal wireless networks mounted over on low power consuming systems. The cutting-edge communication technologies like bluetooth, WIFI and ZigBee significantly play a prime role to cater the basic needs of any individual. ZigBee is one such evolutionary technology steadily getting its popularity in establishing personal wireless networks which is built on small and low-power digital radios. Zigbee defines the physical and MAC layers built on IEEE standard. This paper presents a comprehensive survey of literature reported MAC and PHY enhancements of ZigBee and its contemporary technologies with respect to performance, power consumption, scheduling, resource management and timing and address binding. The work also discusses on the areas of ZigBee MAC and PHY towards their design for specific applications

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Enhanced multichannel routing protocols in MANET

    Get PDF
    Utilising multiple non-overlapping channels in MANET networking can improve performance and capacity. Most multichannel MAC and routing protocols rely on an extra radio interface, a common control channel or time synchronisation to support channel selection and routing, but only at the expense of hardware and power consumption costs. This thesis considers an alternative type of multichannel wireless network where each node has a single half-duplex radio interface and does not rely on a common control channel or time synchronisation. Multichannel MAC and routing protocols that adopt the Receiver Directed Transmission (RDT) communication scheme are investigated to assess their ability to implement a multichannel MANET. A novel multipath multichannel routing protocol called RMMMC is proposed to enhance reliability and fault-tolerance in the MANET. RMMMC introduces new route discovery and recovery processes. The former establishes multiple node and channel disjointed paths in different channels and accumulates them to acquire a full multi-hop path to each destination. The latter detects broken links and repairs them using pre-discovered backup routes. To enhance communication reliability, a novel cross-layer multichannel MAC mechanism called RIVC is proposed. It mitigates transmitting/rerouting data packets to a node that does not have an updated route information towards a destination and only allows data packets with valid routes to occupy the medium. The optional access mode in the MAC protocol is modified to early detect invalid routes at intermediate nodes and switchover to an alternative path. A new cross-layer multichannel MAC mechanism called MB is proposed to reduce contention in a busy channel and enhance load balancing. MB modifies the MAC back-off algorithm to let a transmitter node invoke an alternative path in the alternative channel when the retry count threshold is reached. The proposed multichannel protocols are implemented and evaluated by extensive NS2 simulation studies

    WIMAX Basics from PHY Layer to Scheduling and Multicasting Approaches

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is an emerging broadband wireless technology for providing Last mile solutions for supporting higher bandwidth and multiple service classes with various quality of service requirement. The unique architecture of the WiMAX MAC and PHY layers that uses OFDMA to allocate multiple channels with different modulation schema and multiple time slots for each channel allows better adaptation of heterogeneous user’s requirements. The main architecture in WiMAX uses PMP (Point to Multipoint), Mesh mode or the new MMR (Mobile Multi hop Mode) deployments where scheduling and multicasting have different approaches. In PMP SS (Subscriber Station) connects directly to BS (Base Station) in a single hop route so channel conditions adaptations and supporting QoS for classes of services is the key points in scheduling, admission control or multicasting, while in Mesh networks SS connects to other SS Stations or to the BS in a multi hop routes, the MMR mode extends the PMP mode in which the SS connects to either a relay station (RS) or to Bs. Both MMR and Mesh uses centralized or distributed scheduling with multicasting schemas based on scheduling trees for routing. In this paper a broad study is conducted About WiMAX technology PMP and Mesh deployments from main physical layers features with differentiation of MAC layer features to scheduling and multicasting approaches in both modes of operations
    • …
    corecore