336 research outputs found

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Jornadas Nacionales de Investigación en Ciberseguridad: actas de las VIII Jornadas Nacionales de Investigación en ciberseguridad: Vigo, 21 a 23 de junio de 2023

    Get PDF
    Jornadas Nacionales de Investigación en Ciberseguridad (8ª. 2023. Vigo)atlanTTicAMTEGA: Axencia para a modernización tecnolóxica de GaliciaINCIBE: Instituto Nacional de Cibersegurida

    Codificación adaptativa de red para sistemas inalámbricos IEEE 802.11s en modo infraestructura

    Get PDF
    Las redes inalámbricas malladas IEEE 802.11s en modo infraestructura, denominadas comúnmente como iWMNs (Infrastructure Wireless Mesh Networks), están constituidas por nodos inalámbricos estáticos capaces de trabajar coordinadamente para encaminar paquetes de datos. De esta manera, los nodos colaboran para poder intercambiar información entre sí. Más aún, las iWMNs pueden ser interconectadas con otras tecnologías de red y, de este modo, coadyuvar a extender inalámbricamente la cobertura de estas redes; por ejemplo, las iWMNs se emplean hoy en día para extender la cobertura de redes celulares o de redes cableadas. Gracias a estas características, y también a su bajo costo de infraestructura, las redes iWMNs son consideradas hoy en día como una excelente opción para ofrecer servicios de conectividad inalámbrica a Internet en zonas geográficas donde el uso de otras tecnologías resulta inviable. A pesar de las prometedoras características de las iWMNs; existen estudios y resultados que plantean dudas sobre su desempeño, ya que se ha documentado que el rendimiento de estas redes puede ser afectado por numerosos factores; tales como el uso de TCP para transportar información en entornos inalámbricos, la tasa de errores en el medio inalámbrico, así como la contienda por el acceso al medio entre usuarios de la red. Todos estos factores pueden degradar las prestaciones de las iWMNs y, consecuentemente, afectar la calidad de la experiencia que reciben los usuarios. En esta tesis doctoral se atienden algunos de estos problemas de desempeño mediante la técnica denominada como codificación adaptativa de red. Esta técnica ayuda a que los nodos de una iWMN puedan combinar varios paquetes de datos y de este modo construir un paquete codificado; al transmitir este paquete se transporta la información contenida en los paquetes originales requiriendo únicamente una transmisión inalámbrica, reduciendo de esta manera el uso del medio inalámbrico y, con ello, se incrementa la capacidad de la red. La técnica propuesta, además, busca que el proceso de codificación se adapte a las condiciones de tráfico en la red a través del ajuste dinámico del tiempo de espera de los paquetes en un nodo antes de poder ser combinados; es así como se puede disminuir el retardo de codificación. Con esta propuesta se pretende mejorar sustancialmente el desempeño de las iWMNs, resolviendo algunos problemas que las afectan. La evaluación de la propuesta se realiza empleando simulaciones y evaluaciones numéricas. A través de un minucioso análisis de resultados encontramos que las iWMNs pueden mejorar su rendimiento al emplear la técnica de codificación adaptativa de red, ya que se reduce considerablemente el número de transmisiones inalámbricas en la red, y, por consiguiente: i) se disminuye la contienda por el medio, ii) se reducen las probabilidades de error en el medio y iii) se incrementa la capacidad de la red.IEEE 802.11s INFRASTRUCTURE WIRELESS MESH NETWORKS (commonly known as iWMNs) are integrated by static wireless nodes capable of working in coordination to route data packets. In this way, the nodes collaborate to exchange information with each other. In addition, iWMNs can be interconnected with other network technologies and, in this way, help to wirelessly extend the coverage of these networks; for example, iWMNs are used today to extend the coverage of cellular or wired networks. Thanks to this feature, and also to their low infrastructure cost, iWMNs networks are considered today as an excellent option to offer wireless Internet connectivity services in geographical areas where the use of other network technologies is unfeasible. Despite the promising features of iWMNs, there are studies and results that cast doubt on their performance, since it has been documented that the performance of these networks can be affected by numerous factors; such as the use of TCP to transport information in wireless environments, the transmission errors in the wireless medium, as well as the access contention between network users. All these factors can degrade the performance of iWMNs and, consequently, affect the quality of the experience for the users. In this doctoral thesis, some of these performance problems are addressed through the technique called adaptive network coding. With this technique, the nodes of an iWMN are allowed to combine various data packets and thus build an encoded packet; this packet contains the information from the original packets, requiring only one wireless transmission to transport the original information, reducing the use of the wireless medium and, thereby, increasing the capacity of the network. The proposed technique also seeks to adapt the coding process to the traffic conditions in the network through the dynamic adjustment of the waiting time of the packets in a node before they can be combined. This proposal aims to substantially improve the performance of iWMNs, solving some problems that affect them. The evaluation of the proposal is carried out through simulations and numerical evaluations. After a detailed analysis of the results, we find that iWMNs can improve their performance by using the adaptive network coding technique, since the number of wireless transmissions in the network is considerably reduced, and, consequently, i) the medium access contention decreases, ii) the probability of errors in the medium is reduced, and iii) the capacity of the network increase

    Decentralized Ultra-Reliable Low-Latency Communications through Concurrent Cooperative Transmission

    Get PDF
    Emerging cyber-physical systems demand for communication technologies that enable seamless interactions between humans and physical objects in a shared environment. This thesis proposes decentralized URLLC (dURLLC) as a new communication paradigm that allows the nodes in a wireless multi-hop network (WMN) to disseminate data quickly, reliably and without using a centralized infrastructure. To enable the dURLLC paradigm, this thesis explores the practical feasibility of concurrent cooperative transmission (CCT) with orthogonal frequency-division multiplexing (OFDM). CCT allows for an efficient utilization of the medium by leveraging interference instead of trying to avoid collisions. CCT-based network flooding disseminates data in a WMN through a reception-triggered low-level medium access control (MAC). OFDM provides high data rates by using a large bandwidth, resulting in a short transmission duration for a given amount of data. This thesis explores CCT-based network flooding with the OFDM-based IEEE 802.11 Non-HT and HT physical layers (PHYs) to enable interactions with commercial devices. An analysis of CCT with the IEEE 802.11 Non-HT PHY investigates the combined effects of the phase offset (PO), the carrier frequency offset (CFO) and the time offset (TO) between concurrent transmitters, as well as the elapsed time. The analytical results of the decodability of a CCT are validated in simulations and in testbed experiments with Wireless Open Access Research Platform (WARP) v3 software-defined radios (SDRs). CCT with coherent interference (CI) is the primary approach of this thesis. Two prototypes for CCT with CI are presented that feature mechanisms for precise synchronization in time and frequency. One prototype is based on the WARP v3 and its IEEE 802.11 reference design, whereas the other prototype is created through firmware modifications of the Asus RT-AC86U wireless router. Both prototypes are employed in testbed experiments in which two groups of nodes generate successive CCTs in a ping-pong fashion to emulate flooding processes with a very large number of hops. The nodes stay synchronized in experiments with 10 000 successive CCTs for various modulation and coding scheme (MCS) indices and MAC service data unit (MSDU) sizes. The URLLC requirement of delivering a 32-byte MSDU with a reliability of 99.999 % and with a latency of 1 ms is assessed in experiments with 1 000 000 CCTs, while the reliability is approximated by means of the frame reception rate (FRR). An FRR of at least 99.999 % is achieved at PHY data rates of up to 48 Mbit/s under line-of-sight (LOS) conditions and at PHY data rates of up to 12 Mbit/s under non-line-of-sight (NLOS) conditions on a 20 MHz wide channel, while the latency per hop is 48.2 µs and 80.2 µs, respectively. With four multiple input multiple output (MIMO) spatial streams on a 40 MHz wide channel, a LOS receiver achieves an FRR of 99.5 % at a PHY data rate of 324 Mbit/s. For CCT with incoherent interference, this thesis proposes equalization with time-variant zero-forcing (TVZF) and presents a TVZF receiver for the IEEE 802.11 Non-HT PHY, achieving an FRR of up to 92 % for CCTs from three unsyntonized commercial devices. As CCT-based network flooding allows for an implicit time synchronization of all nodes, a reception-triggered low-level MAC and a reservation-based high-level MAC may in combination support various applications and scenarios under the dURLLC paradigm

    Computational Intelligence for Cooperative Swarm Control

    Full text link
    Over the last few decades, swarm intelligence (SI) has shown significant benefits in many practical applications. Real-world applications of swarm intelligence include disaster response and wildlife conservation. Swarm robots can collaborate to search for survivors, locate victims, and assess damage in hazardous environments during an earthquake or natural disaster. They can coordinate their movements and share data in real-time to increase their efficiency and effectiveness while guiding the survivors. In addition to tracking animal movements and behaviour, robots can guide animals to or away from specific areas. Sheep herding is a significant source of income in Australia that could be significantly enhanced if the human shepherd could be supported by single or multiple robots. Although the shepherding framework has become a popular SI mechanism, where a leading agent (sheepdog) controls a swarm of agents (sheep) to complete a task, controlling a swarm of agents is still not a trivial task, especially in the presence of some practical constraints. For example, most of the existing shepherding literature assumes that each swarm member has an unlimited sensing range to recognise all other members’ locations. However, this is not practical for physical systems. In addition, current approaches do not consider shepherding as a distributed system where an agent, namely a central unit, may observe the environment and commu- nicate with the shepherd to guide the swarm. However, this brings another hurdle when noisy communication channels between the central unit and the shepherd af- fect the success of the mission. Also, the literature lacks shepherding models that can cope with dynamic communication systems. Therefore, this thesis aims to design a multi-agent learning system for effective shepherding control systems in a partially observable environment under communication constraints. To achieve this goal, the thesis first introduces a new methodology to guide agents whose sensing range is limited. In this thesis, the sheep are modelled as an induced network to represent the sheep’s sensing range and propose a geometric method for finding a shepherd-impacted subset of sheep. The proposed swarm optimal herding point uses a particle swarm optimiser and a clustering mechanism to find the sheepdog’s near-optimal herding location while considering flock cohesion. Then, an improved version of the algorithm (named swarm optimal modified centroid push) is proposed to estimate the sheepdog’s intermediate waypoints to the herding point considering the sheep cohesion. The approaches outperform existing shepherding methods in reducing task time and increasing the success rate for herding. Next, to improve shepherding in noisy communication channels, this thesis pro- poses a collaborative learning-based method to enhance communication between the central unit and the herding agent. The proposed independent pre-training collab- orative learning technique decreases the transmission mean square error by half in 10% of the training time compared to existing approaches. The algorithm is then ex- tended so that the sheepdog can read the modulated herding points from the central unit. The results demonstrate the efficiency of the new technique in time-varying noisy channels. Finally, the central unit is modelled as a mobile agent to lower the time-varying noise caused by the sheepdog’s motion during the task. So, I propose a Q-learning- based incremental search to increase transmission success between the shepherd and the central unit. In addition, two unique reward functions are presented to ensure swarm guidance success with minimal energy consumption. The results demonstrate an increase in the success rate for shepherding

    Secure Communications in Next Generation Digital Aeronautical Datalinks

    Get PDF
    As of 2022, Air Traffic Management (ATM) is gradually digitizing to automate and secure data transmission in civil aviation. New digital data links like the L-band Digital Aeronautical Communications System (LDACS) are being introduced for this purpose. LDACS is a cellular, ground-based digital communications system for flight guidance and safety. Unfortunately, LDACS and many other datalinks in civil aviation lack link layer security measures. This doctoral thesis proposes a cybersecurity architecture for LDACS, developing various security measures to protect user and control data. These include two new authentication and key establishment protocols, along with a novel approach to secure control data of resource-constrained wireless communication systems. Evaluations demonstrate a latency increase of 570 to 620 milliseconds when securely attaching an aircraft to an LDACS cell, along with a 5% to 10% security data overhead. Also, flight trials confirm that Ground-based Augmentation System (GBAS) can be securely transmitted via LDACS with over 99% availability. These security solutions enable future aeronautical applications like 4D-Trajectories, paving the way for a digitized and automated future of civil aviation
    • …
    corecore