49,860 research outputs found

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Resilient decision making in steam network investments

    Get PDF
    Steam is a key energy vector for industrial sites, used for process heating, direct injection and stripping, tracing and cogeneration of mechanical power. Steam networks transport steam from producers to consumers and across different pressure levels. The steam production equipments (boilers, cogeneration units and heat exchangers) should be dimensioned to always supply key consumers as well as to deal with extreme demand caused by exceptional events such as unit startups or extreme weather. An important issue to be dealt with is that of unexpected boiler shutdowns, which can take significant amounts of time to bring back online. In cases where demand surpasses the available production of steam, load shedding is necessary in order to keep the network operable. A penalty cost can be associated to load shedding. A well dimensioned steam network is one which is resilient to such events, being able to overcome extreme demand and unexpected boiler shutdowns at minimum cost. This paper proposes a methodology for evaluating the operability of a steam network when facing unexpected boiler shutdowns. A Monte-Carlo simulation is carried out on a multi-period steam network problem, randomly shutting down boilers according to their failure properties (probability of failure and duration of failure). The aim of this method is to evaluate how resilient a steam network is to boiler shutdowns. The Monte-Carlo simulation is applied to a steam network model built using a Mixed Integer Linear Programming (MILP) formulation, whose objective function is to minimise the operational costs of the steam network and therefore also to minimise the penalty costs associated to load shedding. A case study based on anonymised industrial data is used to demonstrate the method. Two investment propositions are evaluated and compared using the proposed method

    ANDROID Exchange Vol 1 Issue 2: International Recovery Platform

    Get PDF

    Scalable algorithms for QoS-aware virtual network mapping for cloud services

    Get PDF
    Both business and consumer applications increasingly depend on cloud solutions. Yet, many are still reluctant to move to cloud-based solutions, mainly due to concerns of service quality and reliability. Since cloud platforms depend both on IT resources (located in data centers, DCs) and network infrastructure connecting to it, both QoS and resilience should be offered with end-to-end guarantees up to and including the server resources. The latter currently is largely impeded by the fact that the network and cloud DC domains are typically operated by disjoint entities. Network virtualization, together with combined control of network and IT resources can solve that problem. Here, we formally state the combined network and IT provisioning problem for a set of virtual networks, incorporating resilience as well as QoS in physical and virtual layers. We provide a scalable column generation model, to address real world network sizes. We analyze the latter in extensive case studies, to answer the question at which layer to provision QoS and resilience in virtual networks for cloud services
    • …
    corecore