864,323 research outputs found
Evaluation of Variability Concepts for Simulink in the Automotive Domain
Modeling variability in Matlab/Simulink becomes more and more important. We
took the two variability modeling concepts already included in Matlab/Simulink
and our own one and evaluated them to find out which one is suited best for
modeling variability in the automotive domain. We conducted a controlled
experiment with developers at Volkswagen AG to decide which concept is
preferred by developers and if their preference aligns with measurable
performance factors. We found out that all existing concepts are viable
approaches and that the delta approach is both the preferred concept as well as
the objectively most efficient one, which makes Delta-Simulink a good solution
to model variability in the automotive domain.Comment: 10 pages, 7 figures, 6 tables, Proceedings of 48th Hawaii
International Conference on System Sciences (HICSS), pp. 5373-5382, Kauai,
Hawaii, USA, IEEE Computer Society, 201
Natural Variability in Projections of Climate Change Impacts on Fine Particulate Matter Pollution
Variations in meteorology associated with climate change can impact fine particulate matter (PM2.5) pollution by affecting natural emissions, atmospheric chemistry, and pollutant transport. However, substantial discrepancies exist among model-based projections of PM2.5 impacts driven by anthropogenic climate change. Natural variability can significantly contribute to the uncertainty in these estimates. Using a large ensemble of climate and atmospheric chemistry simulations, we evaluate the influence of natural variability on projections of climate change impacts on PM2.5 pollution in the United States. We find that natural variability in simulated PM2.5 can be comparable or larger than reported estimates of anthropogenic-induced climate impacts. Relative to mean concentrations, the variability in projected PM2.5 climate impacts can also exceed that of ozone impacts. Based on our projections, we recommend that analyses aiming to isolate the effect climate change on PM2.5 use 10 years or more of modeling to capture the internal variability in air quality and increase confidence that the anthropogenic-forced effect is differentiated from the noise introduced by natural variability. Projections at a regional scale or under greenhouse gas mitigation scenarios can require additional modeling to attribute impacts to climate change. Adequately considering natural variability can be an important step toward explaining the inconsistencies in estimates of climate-induced impacts on PM2.5. Improved treatment of natural variability through extended modeling lengths or initial condition ensembles can reduce uncertainty in air quality projections and improve assessments of climate policy risks and benefits
Recommended from our members
Gait variability: methods, modeling and meaning
The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way of quantifying locomotion and its changes with aging and disease as well as a means of monitoring the effects of therapeutic interventions and rehabilitation. Previous work has suggested that measures of gait variability may be more closely related to falls, a serious consequence of many gait disorders, than are measures based on the mean values of other walking parameters. The Current JNER series presents nine reports on the results of recent investigations into gait variability. One novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis methods is presented along with a heuristic approach to summarizing variability measures. In addition, the first studies of gait variability in animal models of neurodegenerative disease are described, as is a mathematical model of human walking that characterizes certain complex (multifractal) features of the motor control's pattern generator. Another investigation demonstrates that, whereas both healthy older controls and patients with a higher-level gait disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride width and stride time may be influenced by attention loading and may require cognitive input. Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind, suggests how step width variability may relate to fall risk. Together, these studies provide new insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way for expanded research into the control of gait and the practical application of measures of gait variability in the clinical setting
Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond
We present a graphical and dynamic framework for binding and execution of
business) process models. It is tailored to integrate 1) ad hoc processes
modeled graphically, 2) third party services discovered in the (Inter)net, and
3) (dynamically) synthesized process chains that solve situation-specific
tasks, with the synthesis taking place not only at design time, but also at
runtime. Key to our approach is the introduction of type-safe stacked
second-order execution contexts that allow for higher-order process modeling.
Tamed by our underlying strict service-oriented notion of abstraction, this
approach is tailored also to be used by application experts with little
technical knowledge: users can select, modify, construct and then pass
(component) processes during process execution as if they were data. We
illustrate the impact and essence of our framework along a concrete, realistic
(business) process modeling scenario: the development of Springer's
browser-based Online Conference Service (OCS). The most advanced feature of our
new framework allows one to combine online synthesis with the integration of
the synthesized process into the running application. This ability leads to a
particularly flexible way of implementing self-adaption, and to a particularly
concise and powerful way of achieving variability not only at design time, but
also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455
On modeling the variability of bedform dimensions
ABSTRACT: Bedforms are irregular features that cannot easily be described by mean values. The variations in the geometric dimensions affect the bed roughness, and they are important in the modeling of vertical sorting and in modeling the thickness of cross-strata sets. The authors analyze the variability of bedform dimensions for three sets of flume experiments, considering PDFs of bedform height, trough elevation and crest elevation divided by its mean value. It appears that the dimensionless standard deviation of the bedform height is within a narrow range for nearly all experiments. This appears to be valid for the trough elevation and crest elevation, as well. For some modeling purposes, it seems sufficient to assume that the standard deviation is a constant, so that the variation in bedform dimension can be modeled by only predicting the mean bedform dimension.
Clafer: Lightweight Modeling of Structure, Behaviour, and Variability
Embedded software is growing fast in size and complexity, leading to intimate
mixture of complex architectures and complex control. Consequently, software
specification requires modeling both structures and behaviour of systems.
Unfortunately, existing languages do not integrate these aspects well, usually
prioritizing one of them. It is common to develop a separate language for each
of these facets. In this paper, we contribute Clafer: a small language that
attempts to tackle this challenge. It combines rich structural modeling with
state of the art behavioural formalisms. We are not aware of any other modeling
language that seamlessly combines these facets common to system and software
modeling. We show how Clafer, in a single unified syntax and semantics, allows
capturing feature models (variability), component models, discrete control
models (automata) and variability encompassing all these aspects. The language
is built on top of first order logic with quantifiers over basic entities (for
modeling structures) combined with linear temporal logic (for modeling
behaviour). On top of this semantic foundation we build a simple but expressive
syntax, enriched with carefully selected syntactic expansions that cover
hierarchical modeling, associations, automata, scenarios, and Dwyer's property
patterns. We evaluate Clafer using a power window case study, and comparing it
against other notations that substantially overlap with its scope (SysML, AADL,
Temporal OCL and Live Sequence Charts), discussing benefits and perils of using
a single notation for the purpose
- …
