1,965 research outputs found

    A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs

    Get PDF
    This paper presents a mathematical model for the problem of minimizing the maximum lateness on a single machine when the deteriorated jobs are delivered to each customer in various size batches. In reality, this issue may happen within a supply chain in which delivering goods to customers entails cost. Under such situation, keeping completed jobs to deliver in batches may result in reducing delivery costs. In literature review of batch scheduling, minimizing the maximum lateness is known as NP-Hard problem; therefore the present issue aiming at minimizing the costs of delivering, in addition to the aforementioned objective function, remains an NP-Hard problem. In order to solve the proposed model, a Simulation annealing meta-heuristic is used, where the parameters are calibrated by Taguchi approach and the results are compared to the global optimal values generated by Lingo 10 software. Furthermore, in order to check the efficiency of proposed method to solve larger scales of problem, a lower bound is generated. The results are also analyzed based on the effective factors of the problem. Computational study validates the efficiency and the accuracy of the presented model

    Optimization of job shop scheduling with material handling by automated guided vehicle

    Get PDF
    Job Shop Scheduling with Material Handling has attracted increasing attention in both industry and academia, especially with the inception of Industry 4.0 and smart manufacturing. A smart manufacturing system calls for efficient and effective production planning. On a typical modern shop floor, jobs of various types follow certain processing routes through machines or work centers, and automated guided vehicles (AGVs) are utilized to handle the jobs. In this research, the optimization of a shop floor with AGV is carried out, and we also consider the planning scenario under variable processing time of jobs. The goal is to minimize the shop floor production makespan or other specific criteria correlated with makespan, by scheduling the operations of job processing and routing the AGVs. This dissertation includes three research studies that will constitute my doctoral work. In the first study, we discuss a simplified case in which the scheduling problem is reformulated into a vehicle dispatching (assignment) problem. A few AGV dispatching strategies are proposed based on the deterministic optimization of network assignment problems. The AGV dispatching strategies take future transportation requests into consideration and optimally configure transportation resources such that material handling can be more efficient than those adopting classic AGV assignment rules in which only the current request is considered. The strategies are demonstrated and validated with a case study based on a shop floor in literature and compared to classic AGV assignment rules. The results show that AGV dispatching with adoption of the proposed strategy has better performance on some specific criterions like minimizing job waiting time. In the second study, an efficient heuristic algorithm for classic Job Shop Scheduling with Material Handling is proposed. Typically, the job shop scheduling problem and material handling problem are studied separately due to the complexity of both problems. However, considering these two types of decisions in the same model offers benefits since the decisions are related to each other. In this research, we aim to study the scheduling of job operations together with the AGV routing/scheduling, and a formulation as well as solution techniques are proposed. The proposed heuristic algorithm starts from an optimal job shop scheduling solution without limiting the size of AGV fleet, and iteratively reduces the number of available vehicles until the fleet size is equal to the original requirements. The computational experiments suggest that compared to existing solution techniques in literature, the proposed algorithm can achieve comparable solution quality on makespan with much higher computational efficiency. In the third study, we take the variability of processing time into consideration in optimizing job shop scheduling with material handling. Variability caused by random effects and deterioration is discussed, and a series of models are developed to accommodate random and deteriorating processing time respectively. With random processing time, the model is formulated as a Stochastic Programming Job Shop Scheduling with Material Handling model, and with deteriorating processing time the model can be nonlinear under specific deteriorating functions. Based on a widely adopted dataset in existing literature, the stochastic programming model were solved with Pyomo, and models with deterioration were linearized and solved with CPLEX. By considering variable processing time, the JSSMH models can better adapt to real production scenarios

    Single-machine scheduling with deteriorating jobs and learning effects to minimize the makespan

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    The matching relaxation for a class of generalized set partitioning problems

    Full text link
    This paper introduces a discrete relaxation for the class of combinatorial optimization problems which can be described by a set partitioning formulation under packing constraints. We present two combinatorial relaxations based on computing maximum weighted matchings in suitable graphs. Besides providing dual bounds, the relaxations are also used on a variable reduction technique and a matheuristic. We show how that general method can be tailored to sample applications, and also perform a successful computational evaluation with benchmark instances of a problem in maritime logistics.Comment: 33 pages. A preliminary (4-page) version of this paper was presented at CTW 2016 (Cologne-Twente Workshop on Graphs and Combinatorial Optimization), with proceedings on Electronic Notes in Discrete Mathematic

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    A note on optimization in deteriorating systems using scheduling problems with the aging effect and resource allocation models

    Get PDF
    AbstractThis paper concerns scheduling problems with the aging effect and additional resource allocation. A measurable result of the aging phenomenon is that the time required to perform a job increases whereas the additional resource allocation allows one to decrease it. As an example of a deteriorating system that can be described and optimized by the application of the models and algorithms considered, we choose the pickling process, where cleaning of metal items decreases the efficiency of the pickling (cleaning) bath (i.e., one containing an active substance), whereas heating it up can improve the efficiency. In particular, we focus on the optimization problems for such systems and model them as single-machine scheduling problems with job processing times dependent on the fatigue of a machine and on the allocation of additional resources. The objectives considered are the minimization of time criteria (the maximum completion time and the maximum lateness) under a given resource consumption as well as the minimization of the resource consumption under given time criteria. The computational complexity of the problems is determined and solution properties are proved. On the basis of these, we construct optimal polynomial time algorithms for some cases of the problems considered

    Modeling and Solving Flow Shop Scheduling Problem Considering Worker Resource

    Get PDF
    In this paper, an uninterrupted hybrid flow scheduling problem is modeled under uncertainty conditions. Due to the uncertainty of processing time in workshops, fuzzy programming method has been used to control the parameters of processing time and preparation time. In the proposed model, there are several jobs that must be processed by machines and workers, respectively. The main purpose of the proposed model is to determine the correct sequence of operations and assign operations to each machine and each worker at each stage, so that the total completion time (Cmax) is minimized. Also this paper, fuzzy programming method is used for control unspecified parameter has been used from GAMS software to solve sample problems. The results of problem solving in small and medium dimensions show that with increasing uncertainty, the amount of processing time and consequently the completion time increases. Increases from the whole work. On the other hand, with the increase in the number of machines and workers in each stage due to the high efficiency of the machines, the completion time of all works has decreased. Innovations in this paper include uninterrupted hybrid flow storage scheduling with respect to fuzzy processing time and preparation time in addition to payment time. The allocation of workers and machines to jobs is another innovation of this article
    corecore