19,067 research outputs found

    The Estimation of Place-to-Place Migration Flows Using an Alternative Log-Linear Parameter Coding Scheme

    No full text
    The log-linear model, with an alternative parameter coding scheme, is used in this paper to obtain estimates of place-to-place migration flows in situations where the data are inadequate or missing. The alternative parameter coding scheme is particularly useful in constructing the origin-destination interaction structure. To illustrate the method, two empirical examples are presented. The first demonstrates the effectiveness of the methodology by estimating known migration flows between states in the Western region of the United States during the 1985-1990 period. The second example focuses on estimating international migration flows in the Northern region of Europe during the 1999-2000 period where the data are incomplete. Both examples demonstrate the usefulness and generality of this particular method for estimating migration flows

    Putting the pieces of the puzzle together: Age and sex-specific estimates of migration amongst countries in the EU/EFTA, 2002-2007

    No full text
    Because of inconsistencies in reported flows and large amounts of missing data, our knowledge of international migration patterns in Europe is limited. Methods for overcoming data obstacles and harmonising international migration data, however, are improving. In this paper, we provide a methodology for integrating various pieces of incomplete information together, including a partial set of harmonised migration flows, to estimate a complete set of migration flows by origin, destination, age and sex for the 31 countries in the European Union and European Free Trade Association from 2002 to 2007. The results represent a synthetic data base that can be used to inform population projections, policy decisions and migration theory.Du fait d’incohérences dans l’enregistrement des flux migratoires et du grand nombre de données manquantes, notre connaissance des schémas de migrations internationales en Europe reste limitée. Cependant, les méthodes disponibles pour surmonter les obstacles liés aux données et pour harmoniser les données sur la migration internationale s’améliorent. Dans cet article, nous proposons une méthode pour combiner les différents éléments de ces informations incomplètes, incluant un ensemble partiel de données harmonisées sur les flux migratoires, afin d’estimer une série complète de flux migratoires par pays d’origine, pays de destination, âge et sexe pour les 31 pays de l’Union Européenne et de l’Association Européenne de Libre Echange de 2002 à 2007. Les résultats constituent une base de données synthétique pouvant servir de base pour les projections de population, les décisions politiques et les théories relatives à la migration

    Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation

    Full text link
    Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction

    Double-Directional Information Azimuth Spectrum and Relay Network Tomography for a Decentralized Wireless Relay Network

    Full text link
    A novel channel representation for a two-hop decentralized wireless relay network (DWRN) is proposed, where the relays operate in a completely distributive fashion. The modeling paradigm applies an analogous approach to the description method for a double-directional multipath propagation channel, and takes into account the finite system spatial resolution and the extended relay listening/transmitting time. Specifically, the double-directional information azimuth spectrum (IAS) is formulated to provide a compact representation of information flows in a DWRN. The proposed channel representation is then analyzed from a geometrically-based statistical modeling perspective. Finally, we look into the problem of relay network tomography (RNT), which solves an inverse problem to infer the internal structure of a DWRN by using the instantaneous doubledirectional IAS recorded at multiple measuring nodes exterior to the relay region

    Low-Stress Bicycling and Network Connectivity

    Get PDF
    For a bicycling network to attract the widest possible segment of the population, its most fundamental attribute should be low-stress connectivity, that is, providing routes between people’s origins and destinations that do not require cyclists to use links that exceed their tolerance for traffic stress, and that do not involve an undue level of detour. The objective of this study is to develop measures of low-stress connectivity that can be used to evaluate and guide bicycle network planning. We propose a set of criteria by which road segments can be classified into four levels of traffic stress (LTS). LTS 1 is suitable for children; LTS 2, based on Dutch bikeway design criteria, represents the traffic stress that most adults will tolerate; LTS 3 and 4 represent greater levels of stress. As a case study, every street in San Jose, California, was classified by LTS. Maps in which only bicycle-friendly links are displayed reveal a city divided into islands within which low-stress bicycling is possible, but separated from one another by barriers that can be crossed only by using high-stress links. Two points in the network are said to be connected at a given level of traffic stress if the subnetwork of links that do not exceed the specified level of stress connects them with a path whose length does not exceed a detour criterion (25% longer than the most direct path). For the network as a whole, we demonstrate two measures of connectivity that can be applied for a given level of traffic stress. One is “percent trips connected,” defined as the fraction of trips in the regional trip table that can be made without exceeding a specified level of stress and without excessive detour. This study used the home-to-work trip table, though in principle any trip table, including all trips, could be used. The second is “percent nodes connected,” a cruder measure that does not require a regional trip table, but measures the fraction of nodes in the street network (mostly street intersections) that are connected to each other. Because traffic analysis zones (TAZs) are too coarse a geographic unit for evaluating connectivity by bicycle, we also demonstrate a method of disaggregating the trip table from the TAZ level to census blocks. For any given TAZ, origins in the home-to-work trip table are allocated in proportion to population, while destinations are allocated based on land-use data. In the base case, the fraction of work trips up to six miles long that are connected at LTS 2 is 4.7%, providing a plausible explanation for the city’s low bicycling share. We show that this figure would almost triple if a proposed slate of improvements, totaling 32 miles in length but with strategically placed segments that provide low-stress connectivity across barriers, were implemented

    Using Machine Learning to Predict Swine Movements within a Regional Program to Improve Control of Infectious Diseases in the US.

    Get PDF
    Between-farm animal movement is one of the most important factors influencing the spread of infectious diseases in food animals, including in the US swine industry. Understanding the structural network of contacts in a food animal industry is prerequisite to planning for efficient production strategies and for effective disease control measures. Unfortunately, data regarding between-farm animal movements in the US are not systematically collected and thus, such information is often unavailable. In this paper, we develop a procedure to replicate the structure of a network, making use of partial data available, and subsequently use the model developed to predict animal movements among sites in 34 Minnesota counties. First, we summarized two networks of swine producing facilities in Minnesota, then we used a machine learning technique referred to as random forest, an ensemble of independent classification trees, to estimate the probability of pig movements between farms and/or markets sites located in two counties in Minnesota. The model was calibrated and tested by comparing predicted data and observed data in those two counties for which data were available. Finally, the model was used to predict animal movements in sites located across 34 Minnesota counties. Variables that were important in predicting pig movements included between-site distance, ownership, and production type of the sending and receiving farms and/or markets. Using a weighted-kernel approach to describe spatial variation in the centrality measures of the predicted network, we showed that the south-central region of the study area exhibited high aggregation of predicted pig movements. Our results show an overlap with the distribution of outbreaks of porcine reproductive and respiratory syndrome, which is believed to be transmitted, at least in part, though animal movements. While the correspondence of movements and disease is not a causal test, it suggests that the predicted network may approximate actual movements. Accordingly, the predictions provided here might help to design and implement control strategies in the region. Additionally, the methodology here may be used to estimate contact networks for other livestock systems when only incomplete information regarding animal movements is available
    • …
    corecore