2 research outputs found

    Software development processes for games: a systematic literature review

    Get PDF
    This paper describes the methodology and results from a Systematic Literature Review (SLR) of the software processes used in game development. A total of 404 papers were analyzed as part of the review and the various process models that are used in industry and academia/research are presented. Software Process Improvement (SPI) initiatives for game development are dis-cussed. The factors that promote or deter the adoption of process models, and implementing SPI in practice are highlighted. Our findings indicate that there is no single model that serves as a best practice process model for game development and it is a matter of deciding which model is best suited for a particular game. Agile models such as Scrum and XP are suited to the knowledge intensive domain of game development where innovation and speed to market are vital. Hybrid approaches such as reuse can also be suitable for game development where the risk of the upfront investment in terms of time and cost is mitigated with a game that has stable requirements and a longer lifespan

    Agent Oriented Software Engineering (AOSE) Approach to Game Development Methodology

    Get PDF
    This thesis investigates existing game development methodologies, through the process of researching game and system development models. The results indicate that these methodologies are engineered to solve specific problems, and most are suitable only for specific game genres. Different approaches to building games have been proposed in recent years. However, most of these methodologies focus on the design and implementation phase. This research aims to enhance game development methodologies by proposing a novel game development methodology, with the ability to function in generic game genres, thereby guiding game developers and designers from the start of the game development phase to the end of the implementation and testing phase. On a positive note, aligning development practice with universal standards makes it far easier to incorporate extra team members at short notice. This increased the confidence when working in the same environment as super developers. In the gaming industry, most game development proceeds directly from game design to the implementation phase, and the researcher observes that this is the only industry in which this occurs. It is a consequence of the game industry’s failure to integrate with modern development techniques. The ultimate aim of this research to apply a new game development methodology using most game elements to enhance success. This development model will align with different game genres, and resolve the gap between industry and research area, so that game developers can focus on the important business of creating games. The primary aim of Agent Oriented Agile Base (AOAB) game development methodology is to present game development techniques in sequential steps to facilitate game creation and close the gap in the existing game development methodologies. Agent technology is used in complex domains such as e-commerce, health, manufacturing, games, etc. In this thesis we are interested in the game domain, which comprises a unique set of characteristics such as automata, collaboration etc. Our AOAB will be based on a predictive approach after adaptation of MaSE methodology, and an adaptive approach using Agile methodology. To ensure proof of concept, AOAB game development methodology will be evaluated against industry principles, providing an industry case study to create a driving test game, which was the problem motivating this research. Furthermore, we conducted two workshops to introduce our methodology to both academic and industry participants. Finally, we prepared an academic experiment to use AOAB in the academic sector. We have analyzed the feedbacks and comments and concluded the strengths and weakness of the AOAB methodology. The research achievements are summarized and proposals for future work outlined
    corecore