1,058 research outputs found

    A Survey of Access Control Models in Wireless Sensor Networks

    Get PDF
    Copyright 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)Wireless sensor networks (WSNs) have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed.Peer reviewe

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    mTOSSIM: A simulator that estimates battery lifetime in wireless sensor networks

    Get PDF
    Knowledge of the battery lifetime of the wireless sensor network is important for many situations, such as in evaluation of the location of nodes or the estimation of the connectivity, along time, between devices. However, experimental evaluation is a very time-consuming task. It depends on many factors, such as the use of the radio transceiver or the distance between nodes. Simulations reduce considerably this time. They allow the evaluation of the network behavior before its deployment. This article presents a simulation tool which helps developers to obtain information about battery state. This simulator extends the well-known TOSSIM simulator. Therefore it is possible to evaluate TinyOS applications using an accurate model of the battery consumption and its relation to the radio power transmission. Although an specific indoor scenario is used in testing of simulation, the simulator is not limited to this environment. It is possible to work in outdoor scenarios too. Experimental results validate the proposed model.Junta de Andalucía P07-TIC-02476Junta de Andalucía TIC-570

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Using genetic algorithms to optimise Wireless Sensor Network design

    Get PDF
    Wireless Sensor Networks(WSNs) have gained a lot of attention because of their potential to immerse deeper into people' lives. The applications of WSNs range from small home environment networks to large habitat monitoring. These highly diverse scenarios impose different requirements on WSNs and lead to distinct design and implementation decisions. This thesis presents an optimization framework for WSN design which selects a proper set of protocols and number of nodes before a practical network deployment. A Genetic Algorithm(GA)-based Sensor Network Design Tool(SNDT) is proposed in this work for wireless sensor network design in terms of performance, considering application-specific requirements, deployment constrains and energy characteristics. SNDT relies on offine simulation analysis to help resolve design decisions. A GA is used as the optimization tool of the proposed system and an appropriate fitness function is derived to incorporate many aspects of network performance. The configuration attributes optimized by SNDT comprise the communication protocol selection and the number of nodes deployed in a fixed area. Three specific cases : a periodic-measuring application, an event detection type of application and a tracking-based application are considered to demonstrate and assess how the proposed framework performs. Considering the initial requirements of each case, the solutions provided by SNDT were proven to be favourable in terms of energy consumption, end-to-end delay and loss. The user-defined application requirements were successfully achieved

    Underground Mining Monitoring and Communication Systems based on ZigBee and GIS

    Get PDF
    ZigBee as a wireless sensor network (WSN) was developed for underground mine monitoring and communication systems. The radio wave attenuations between ZigBee nodes were investigated to measure underground communication distances. Various sensor node arrangements of ZigBee topologies were evaluated. A system integration of a WSN-assisted GIS for underground mining monitoring and communication from a surface office was proposed. The controllable and uncontrollable parameters of underground environments were assessed to establish a reliable ZigBee network
    corecore