5 research outputs found

    Characterization and Modeling of High Power Microwave Effects in CMOS Microelectronics

    Get PDF
    The intentional use of high power microwave (HPM) signals to disrupt microelectronic systems is a substantial threat to vital infrastructure. Conventional methods to assess HPM threats involve empirical testing of electronic equipment, which provides no insight into fundamental mechanisms of HPM induced upset. The work presented in this dissertation is part of a broad effort to develop more effective means for HPM threat assessment. Comprehensive experimental evaluation of CMOS digital electronics was performed to provide critical information of the elementary mechanisms that govern the dynamics of HPM effects. Results show that electrostatic discharge (ESD) protection devices play a significant role in the behavior of circuits irradiated by HPM pulses. The PN junctions of the ESD protection devices distort HPM waveforms producing DC voltages at the input of the core logic elements, which produces output bit errors and abnormal circuit power dissipation. The dynamic capacitance of these devices combines with linear parasitic elements to create resonant structures that produce nonlinear circuit dynamics such as spurious oscillations. The insight into the fundamental mechanisms this research has revealed will contribute substantially to the broader effort aimed at identifying and mitigating susceptibilities in critical systems. Also presented in this work is a modeling technique based on scalable analytical circuit models that accounts for the non-quasi-static behavior of the ESD protection PN junctions. The results of circuit simulations employing these device models are in excellent agreement with experimental measurements, and are capable of predicting the threshold of effect for HPM driven non-linear circuit dynamics. For the first time, a deterministic method of evaluating HPM effects based on physical, scalable device parameters has been demonstrated. The modeling presented in this dissertation can be easily integrated into design cycles and will greatly aid the development of electronic systems with improved HPM immunity

    High power microwave interference effects on analog and digital circuits in IC's

    Get PDF
    Microwave or electromagnetic interference (EMI) can couple into electronic circuits and systems intentionally from high power microwave (HPM) sources or unintentionally due to the proximity to general electromagnetic (EM) environments, and cause "soft" reversible upsets and "hard" irreversible failures. As scaling-down of device feature size and bias voltage progresses, the circuits and systems become more susceptible to the interference. Thus, even low power interference can disrupt the operation of the circuits and systems. Furthermore, it is reported that even electronic systems under high level of shielding can be upset by intentional electromagnetic interference (IEMI), which has been drawing a great deal of concern from both the civil and military communities, but little has been done in terms of systematic study and investigation of these effects on IC circuits and devices. We have investigated the effects of high power microwave interference on three levels, (a) on fundamental single MOSFET devices, (b) on basic CMOS IC inverters and cascaded inverters, and (c) on a representative large IC timer circuit for automotive applications. We have studied and identified the most vulnerable static and dynamic parameters of operation related to device upsets. Fundamental upset mechanisms in MOSFETs and CMOS inverters and their relation to the characteristics of microwave interference (power, frequency, width, and period) and the device properties such as size, mobility, dopant concentration, and contact resistances, were investigated. Critical upsets in n-channel MOSFET devices resulting in loss of amplifier characteristics, were identified for the power levels above 10dBm in the frequency range between 1 and 20 GHz. We have found that microwave interference induced excess charges are responsible for the upsets. Upsets in the static operation of CMOS inverters such as noise margins, output voltages, power dissipation, and bit-flip errors were identified using a load-line characteristic analysis. We developed a parameter extraction method that can predict the dynamic operation of inverters under microwave interference from DC load-line characteristics. Using the method, the effects of microwave interference on propagation delays, output voltage swings, and output currents as well as their relation to device scaling, were investigated. Two new critical hard error sources in MOSFETs and CMOS inverters regarding power dissipation and power budget disruption were found. EMI hardened design for digital circuits has been proposed to mitigate the stress on the devices, the contacts, and the interconnects. We found important new bit-flip and latch-up errors under pulsed microwave interference, which demonstrated that the excess charge effects are due to electron-hole pair generation under microwave interference. We proposed a theory of excess charge effects and obtained good agreement of our excess charge model with our experimental results. Further work is proposed to improve the vulnerabilities of integrated circuits

    Space Station Systems: a Bibliography with Indexes (Supplement 8)

    Get PDF
    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Space station systems: A bibliography with indexes (supplement 9)

    Get PDF
    This bibliography lists 1,313 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore