4 research outputs found

    A Markov-chain Activity-based Model for Pedestrians in Office Buildings

    Get PDF
    As the number of people working in office buildings increases, there is an urgent need to improve building services, such as lighting and temperature control, within these buildings to increase energy efficiency and well-being of occupants. A pedestrian behaviour model that simulates office occupants’ movements and locations can provide the high spatial and temporal resolution data required for the testing, evaluation, and optimization of these control systems. However, since most studies in pedestrian research focus on modelling specific actions at the operational level or target situations where movement schedules do not have to modelled, a pedestrian behaviour model that can simulate complex situations over long time periods is missing. Therefore, this paper proposes a tactical level model to generate occupant movement patterns in office buildings. The Markov-chain activity-based model proposed here is data parsimonious, flexible in accepting different levels of information, and can produce high resolution output. The mathematical properties of the methodology are analyzed to understand their impact on the final results. Finally, the tactical level pedestrian behaviour model is face validated using a case study of an imaginary office with a simple layout

    Thermal comfort, occupant control behaviour and performance gap – a study of office buildings in north-east China using data mining

    Get PDF
    Simulation techniques have been increasingly applied to building performance evaluation and building environmental design. However, uncertain and random factors, such as occupant behaviour, can generate a performance gap between the results from computer simulations and real buildings. This study involved a longitudinal questionnaire survey conducted for one year, along with a continuous recording of environmental parameters and behaviour state changes, in ten offices located in the severe cold region of north-east China. The offices varied from private rooms to open-plan spaces. The thermal comfort experiences of the office workers and their environmental control behaviours were tracked and analysed during summer and winter seasons. The interaction of the thermal comfort experiences of the occupants and behaviour changes were analysed, and window-opening behaviour patterns were defined by applying data mining techniques. The results also generated window-opening behaviour working profiles to link to building performance simulation software. The aim was to apply these profiles to further study the discrepancies between simulation and monitored results that arise from real-world occupant behaviour patterns
    corecore