18,205 research outputs found

    Antilock braking control using robust control approach

    Get PDF
    The aims of this study are to establish the mathematical model and the robust control technique for an Antilock Braking System (ABS). The ABS have been developed to reduce tendency of wheel lock up and to improve vehicle control during sudden braking. The ABS work by maintaining the wheel slip to a desired level so that maximum tractive force and maximum vehicle deceleration is obtained, thus reducing the vehicle stopping distance. A quarter vehicle model undergoing straightline braking maneuver, tire dynamics and hydraulic brake dynamics mathematical model are developed to represent the ABS model. The established mathematical model shows the ABS dynamics exhibits strong nonlinear characteristics. Thus, Sliding Mode Control which is a robust control technique is proposed in this study to regulate the wheel slip at the desired value depending on the road surface. The mathematical derivations proved the designed controller satisfy the stability requirement. Extensive simulation study is performed to verify the effectiveness of the designed controller and the result shows the designed controller able to maintain the wheel slip at the desired value and reducing the stopping distanc

    Flutter suppression for the active flexible wing: Control system design and experimental validation AIAA-92-2097

    Get PDF
    The synthesis and experimental validation of a control law for13; an actiqe flutter suppression system for the Active Flexible13; Wing wind-tunnel model is presenied. The design was13; accomplished with traditional root locus and Nyquist methods13; using interactive computer graphics tools and with extensive use13; of simulation-based analysis. The design approach relied on a13; fundamental understanding of the flutter mechanism to13; formulate a simple control law structure. Experimentally, the13; flutter suppression controller succeeded in simultaneous13; suppression of two flutter modes, significantly increasing the13; flutter dynamic pressure despite errors in the design model. The13; flutter suppression controller was also successfully operated in13; combination with a rolling maneuver controller to perform13; flutter suppression during rapid rolling maneuvers

    Dynamics of aircraft antiskid braking systems

    Get PDF
    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models

    Reusing Test-Cases on Different Levels of Abstraction in a Model Based Development Tool

    Full text link
    Seamless model based development aims to use models during all phases of the development process of a system. During the development process in a component-based approach, components of a system are described at qualitatively differing abstraction levels: during requirements engineering component models are rather abstract high-level and underspecified, while during implementation the component models are rather concrete and fully specified in order to enable code generation. An important issue that arises is assuring that the concrete models correspond to abstract models. In this paper, we propose a method to assure that concrete models for system components refine more abstract models for the same components. In particular we advocate a framework for reusing testcases at different abstraction levels. Our approach, even if it cannot completely prove the refinement, can be used to ensure confidence in the development process. In particular we are targeting the refinement of requirements which are represented as very abstract models. Besides a formal model of our approach, we discuss our experiences with the development of an Adaptive Cruise Control (ACC) system in a model driven development process. This uses extensions which we implemented for our model-based development tool and which are briefly presented in this paper.Comment: In Proceedings MBT 2012, arXiv:1202.582
    corecore