4 research outputs found

    Optimal scheduling of PEV charging/discharging in microgrids with combined objectives

    Get PDF
    While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV charging may cause load surge in a power grid. This paper studies the optimization of PEV charging/discharging scheduling to reduce customer cost and improve grid performance. Optimization algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a pre-defined power profile, and 3) combine objective functions in 1) and 2). A Microgrid with PV arrays, bi-directional PEV charging stations, and a commercial building is used in this study. The bi-directional power from/to PEVs provides the opportunity of using PEVs to reduce the intermittency of PV power generation and the peak load of the Microgrid. Simulation has been performed for all three cases and the simulation results show that the presented optimization algorithms can meet defined objectives

    Distributed Control of Charging for Electric Vehicle Fleets Under Dynamic Transformer Ratings

    Get PDF
    Due to their large power draws and increasing adoption rates, electric vehicles (EVs) will become a significant challenge for electric distribution grids. However, with proper charging control strategies, the challenge can be mitigated without the need for expensive grid reinforcements. This article presents and analyzes new distributed charging control methods to coordinate EV charging under nonlinear transformer temperature ratings. Specifically, we assess the tradeoffs between required data communications, computational efficiency, and optimality guarantees for different control strategies based on a convex relaxation of the underlying nonlinear transformer temperature dynamics. Classical distributed control methods, such as those based on dual decomposition and alternating direction method of multipliers (ADMM), are compared against the new augmented Lagrangian-based alternating direction inexact Newton (ALADIN) method and a novel low-information, look-ahead version of packetized energy management (PEM). These algorithms are implemented and analyzed for two case studies on residential and commercial EV fleets with fixed and variable populations. The latter motivates a novel EV hub charging model that captures arrivals and departures. Simulation results validate the new methods and provide insights into key tradeoffs
    corecore