39,465 research outputs found

    Influence Model of User Behavior Characteristics on Information Dissemination

    Get PDF
    Quantitative analysis on human behavior, especially mining and modeling temporal and spatial regularities, is a common focus of statistical physics and complexity sciences. The in-depth understanding of human behavior helps in explaining many complex socioeconomic phenomena, and in finding applications in public opinion monitoring, disease control, transportation system design, calling center services, information recommendation. In this paper,we study the impact of human activity patterns on information diffusion. Using SIR propagation model and empirical data, conduct quantitative research on the impact of user behavior on information dissemination. It is found that when the exponent is small, user behavioral characteristics have features of many new dissemination nodes, fast information dissemination, but information continued propagation time is short, with limited influence; when the exponent is big, there are fewer new dissemination nodes, but will expand the scope of information dissemination and extend information dissemination duration; it is also found that for group behaviors, the power-law characteristic a greater impact on the speed of information dissemination than individual behaviors. This study provides a reference to better understand influence of social networking user behavior characteristics on information dissemination and kinetic effect

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi

    Learning user-specific latent influence and susceptibility from information cascades

    Full text link
    Predicting cascade dynamics has important implications for understanding information propagation and launching viral marketing. Previous works mainly adopt a pair-wise manner, modeling the propagation probability between pairs of users using n^2 independent parameters for n users. Consequently, these models suffer from severe overfitting problem, specially for pairs of users without direct interactions, limiting their prediction accuracy. Here we propose to model the cascade dynamics by learning two low-dimensional user-specific vectors from observed cascades, capturing their influence and susceptibility respectively. This model requires much less parameters and thus could combat overfitting problem. Moreover, this model could naturally model context-dependent factors like cumulative effect in information propagation. Extensive experiments on synthetic dataset and a large-scale microblogging dataset demonstrate that this model outperforms the existing pair-wise models at predicting cascade dynamics, cascade size, and "who will be retweeted".Comment: from The 29th AAAI Conference on Artificial Intelligence (AAAI-2015
    • …
    corecore