817 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Analytical Model of Adaptive CSMA-CA MAC for Reliable and Timely Clustered Wireless Multi-Hop Communication

    Get PDF
    Reliability and delay of a single cluster wireless network is well analysed in the literature. Multi-hop communication over the number of clusters is essential to scale the network. Analytical model for reliability and end-to-end delay optimization for multi-hop clustered network is presented in this paper. Proposed model is a three dimensional markov chain. Three dimensions of markov model are the adaptable mac parameters of CSMA-CA. Model assumes wakeup rates for each cluster. Results show that reliability and delay are significantly improved than previous analytical models proposed. It has been observed that overall reliability of multi-hop link is improved, with reduction in end-to-end delay is reduced even at lower wakeup rates of a cluste

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Reliability and delay analysis of slotted anycast multi-hop wireless networks targeting dense traffic iot applications

    Get PDF
    Studies on IEEE 802.15.4 MAC in the current literature for anycast multi-hop networks do not capture a node's behaviour accurately. Due to the inaccurate modeling of state-wise behaviour of a node, the optimization of network parameters has not been efficient so far. In this work, we include the state-wise behaviour of a relay node into a 3D Markov model to more accurately investigate the protocol performance. Performance analysis of the proposed analytical model is evaluated for different variants of active state length, packet length and wake up rates considering reliability and delay as key performance metrics. Performance analysis shows that the model captures the behaviour of relay nodes most accurately

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial
    corecore