5 research outputs found

    Comparison of electrohysterogram signal measured by surface electrodes with different designs: A computational study with dipole band and abdomen models

    Get PDF
    Non-invasive measurement of uterine activity using electrohysterogram (EHG) surface electrodes has been attempted to monitor uterine contraction. This study aimed to computationally compare the performance of acquiring EHG signals using monopolar electrode and three types of Laplacian concentric ring electrodes (bipolar, quasi-bipolar and tri-polar). With the implementation of dipole band model and abdomen model, the performances of four electrodes in terms of the local sensitivity were quantifed by potential attenuation. Furthermore, the efects of fat and muscle thickness on potential attenuation were evaluated using the bipolar and tri-polar electrodes with diferent radius. The results showed that all the four types of electrodes detected the simulated EHG signals with consistency. That the bipolar and tri-polar electrodes had greater attenuations than the others, and the shorter distance between the origin and location of dipole band at 20dB attenuation, indicating that they had relatively better local sensitivity. In addition, ANOVA analysis showed that, for all the electrodes with diferent outer ring radius, the efects of fat and muscle on potential attenuation were signifcant (all p<0.01). It is therefore concluded that the bipolar and tri-polar electrodes had higher local sensitivity than the others, indicating that they can be applied to detect EHG efectively

    Noninvasive Estimation of the Electrohysterographic Action-Potential Conduction Velocity

    Full text link

    Electrohysterography in pregnancy:from technical innovation to clinical practice

    Get PDF

    Modeling and identification of the electrohysterographic volume conductor by high-density electrodes

    Get PDF
    The surface electrohysterographic (EHG) signal represents the bioelectrical activity that triggers the mechanical contraction of the uterine muscle. Previous work demonstrated the relevance of the EHG signal analysis for fetal and maternal monitoring as well as for prognosis of preterm labor. However, for the introduction in the clinical practice of diagnostic and prognostic EHG techniques, further insights are needed on the properties of the uterine electrical activation and its propagation through biological tissues. An important contribution for studying these phenomena in humans can be provided by mathematical modeling. A five-parameter analytical model of the EHG volume conductor and the cellular action potential (AP) is proposed here and tested on EHG signals recorded by a grid of 64 high-density electrodes. The model parameters are identified by a least-squares optimization method that uses a subset of electrodes. The parameters representing fat and abdominal muscle thickness are also measured by echography. The mean correlation coefficient and standard deviation of the difference between the echographic and EHG estimates were 0.94 and 1.9 mm, respectively. No bias was present. These results suggest that the model provides an accurate description of the EHG AP and the volume conductor, with promising perspectives for future applications
    corecore