21,615 research outputs found

    Hydrogen vs. Battery in the long-term operation. A comparative between energy management strategies for hybrid renewable microgrids

    Get PDF
    The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time, the use of renewable energy sources is pursued to address decarbonization targets, but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing, at the same time, the security and reliability of the microgrids. Locally distributed energy storage systems (ESS) may provide the capacity to temporarily decouple production and demand. In this sense, the most implemented ESS in local energy districts are small–medium-scale electrochemical batteries. However, hydrogen systems are viable for storing larger energy quantities thanks to its intrinsic high mass-energy density. To match generation, demand and storage, energy management systems (EMSs) become crucial. This paper compares two strategies for an energy management system based on hydrogen-priority vs. battery-priority for the operation of a hybrid renewable microgrid. The overall performance of the two mentioned strategies is compared in the long-term operation via a set of evaluation parameters defined by the unmet load, storage efficiency, operating hours and cumulative energy. The results show that the hydrogen-priority strategy allows the microgrid to be led towards island operation because it saves a higher amount of energy, while the battery-priority strategy reduces the energy efficiency in the storage round trip. The main contribution of this work lies in the demonstration that conventional EMS for microgrids’ operation based on battery-priority strategy should turn into hydrogen-priority to keep the reliability and independence of the microgrid in the long-term operation

    Advanced Control for Energy Management of Grid-Connected Hybrid Power Systems in the Sugar Cane Industry

    Get PDF
    This work presents a process supervision and advanced control structure, based on Model Predictive Control (MPC) coupled with disturbance estimation techniques and a finite-state machine decision system, responsible for setting energy productions set-points. This control scheme is applied to energy generation optimization in a sugar cane power plant, with non-dispatchable renewable sources, such as photovoltaic and wind power generation, as well as dispatchable sources, as biomass. The energy plant is bound to produce steam in different pressures, cold water and, imperiously, has to produce and maintain an amount of electric power throughout each month, defined by contract rules with a local distribution network operator (DNO). The proposed predictive control structure uses feedforward compensation of estimated future disturbances, obtained by the Double Exponential Smoothing (DES) method. The control algorithm has the task of performing the management of which energy system to use, maximize the use of the renewable energy sources, manage the use of energy storage units and optimize energy generation due to contract rules, while aiming to maximize economic profits. Through simulation, the proposed system is compared to a MPC structure, with standard techniques, and shows improved behavior.Ministerio de EconomĂ­a y Competitividad CNPq401126/2014-5Ministerio de EconomĂ­a y Competitividad CNPq303702/2011-7Ministerio de EconomĂ­a y Competitividad DPI2016-78338-

    Binary Search Algorithm for Mixed Integer Optimization: Application to energy management in a microgrid

    Get PDF
    This paper presents a binary search algorithm to deal with binary variables in mixed integer optimization problems. One example of this kind of problem is the optimal operation of hydrogen storage and energy sale and purchase into a microgrids context. In this work was studied a system composed by a microgrid that has a connection with the external electrical network and a charging station for electric cars. The system modeling was carried out by the Energy Hubs methodology. The proposed algorithm transforms the MIQP (Mixed Integer Quadratic Program) problem into a QP (Quadratic Program) that is easier to solve. In this way the overall control task is carried out the electricity purchase and sale to the power grid, maximizes the use of renewable energy sources, manages the use of energy storages and supplies the charge of the parked vehicles.Ministerio de EconomĂ­a y Competitividad DPI2013-46912-C2-1-RUniversidad de Sevilla CNPq401126/2014-5Universidad de Sevilla CNPq303702/2011-

    Energy Management Strategies in hydrogen Smart-Grids: A laboratory experience

    Get PDF
    As microgrids gain reputation, nations are making decisions towards a new energetic paradigm where the centralized model is being abandoned in favor of a more sophisticated, reliable, environmentally friendly and decentralized one. The implementation of such sophisticated systems drive to find out new control techniques that make the system “smart”, bringing the Smart-Grid concept. This paper studies the role of Energy Management Strategies (EMSs) in hydrogen microgrids, covering both theoretical and experimental sides. It first describes the commissioning of a new labscale microgrid system to analyze a set of different EMS performance in real-life. This is followed by a summary of the approach used towards obtaining dynamic models to study and refine the different controllers implemented within this work. Then the implementation and validation of the developed EMSs using the new labscale microgrid are discussed. Experimental results are shown comparing the response of simple strategies (hysteresis band) against complex on-line optimization techniques, such as the Model Predictive Control. The difference between both approaches is extensively discussed. Results evidence how different control techniques can greatly influence the plant performance and finally we provide a set of guidelines for designing and operating Smart Grids.Ministerio de Economía y Competitividad DPI2013-46912-C2-1-

    Development and experimental evaluation of the control system of a hybrid fuel cell vehicle

    Get PDF
    This work presents the development and experimental evaluation of a Fuel Cell Hybrid Vehicle, focusing on the control system. The main objective of this paper is to present a real vehicle which has been designed in order to demonstrate the feasibility of the use of hydrogen as an energy source for automotive applications. The paper describes the components that are integrated in the vehicle and presents several experimental results obtained during normal operation. A control system is designed and tested in order to perform all the operations related to the coordinated operation of the fuel cell, the intermediate electrical storage and the power train. Its main task is to compute the power that must be demanded to the fuel cell in real time. This computation is done in order to satisfy the power demand of the electric motor taking into account the state of charge of the batteries and the operating regime of the fuel cell. This is accomplished by manipulating the electronic converter which regulate the current that the fuel cell supplies to the batteries.Ministerio de Ciencia y TecnologĂ­a DPI2007-66718-C04-0

    On the Comparison of Stochastic Model Predictive Control Strategies Applied to a Hydrogen-based Microgrid

    Get PDF
    In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.Ministerio de EconomĂ­a y Competitividad DPI2013-46912-C2-1-RMinisterio de EconomĂ­a y Competitividad DPI2013-482443-C2-1-

    Ubiquitous energy storage

    Get PDF
    This paper presents a vision of a future power system with "ubiquitous energy storage", where storage would be utilized at all levels of the electricity system. The growing requirement for storage is reviewed, driven by the expansion of distributed generation. The capabilities and existing applications of various storage technologies are presented, providing a useful review of the state of the art. Energy storage will have to be integrated with the power system and there are various ways in which this may be achieved. Some of these options are discussed, as are commercial and regulatory issues. In two case studies, the costs and benefits of some storage options are assessed. It is concluded that electrical storage is not cost effective but that thermal storage offers attractive opportunities
    • 

    corecore