54 research outputs found

    A Hybrid DBN and CRF Model for Spectral-Spatial Classification of Hyperspectral Images

    Full text link

    High-Resolution Remote Sensing Image Classification Using Associative Hierarchical CRF Considering Segmentation Quality

    Get PDF
    This letter proposes an associative hierarchical conditional random field (AHCRF) model to improve the classification accuracy of high-resolution remote sensing images. It considers segmentation quality of superpixels, avoids a time-consuming selection of optimal scale parameters, and alleviates the problem of classification accuracy sensitive to undersegmentation errors that is present in traditional object-oriented classification methods. The model is built on a graph hierarchy, including the pixel layer as a base layer and multiple superpixel layers derived from a mean shift presegmentation. It extracts clustered features of pixels for superpixels at each layer and then defines the potentials of the AHCRF model. We suggest a weighted version of the interlayer potential using the size of a superpixel as a measure to reflect segmentation quality. In this way, erroneously labeled pixels of a superpixel are penalized. Experiments are presented using a part of the downsampled Vaihingen data from the ISPRS benchmark data set. Results confirm that our model shows more than 80% overall classification accuracy and is superior to the original AHCRF model and comparable to other models. It also alleviates the choosing of suitable segmentation parameters

    Supervised classification methods applied to airborne hyperspectral images: Comparative study using mutual information

    Full text link
    Nowadays, the hyperspectral remote sensing imagery HSI becomes an important tool to observe the Earth's surface, detect the climatic changes and many other applications. The classification of HSI is one of the most challenging tasks due to the large amount of spectral information and the presence of redundant and irrelevant bands. Although great progresses have been made on classification techniques, few studies have been done to provide practical guidelines to determine the appropriate classifier for HSI. In this paper, we investigate the performance of four supervised learning algorithms, namely, Support Vector Machines SVM, Random Forest RF, K-Nearest Neighbors KNN and Linear Discriminant Analysis LDA with different kernels in terms of classification accuracies. The experiments have been performed on three real hyperspectral datasets taken from the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor AVIRIS and the Reflective Optics System Imaging Spectrometer ROSIS sensors. The mutual information had been used to reduce the dimensionality of the used datasets for better classification efficiency. The extensive experiments demonstrate that the SVM classifier with RBF kernel and RF produced statistically better results and seems to be respectively the more suitable as supervised classifiers for the hyperspectral remote sensing images. Keywords: hyperspectral images, mutual information, dimension reduction, Support Vector Machines, K-Nearest Neighbors, Random Forest, Linear Discriminant Analysis

    Machine Learning for Robust Understanding of Scene Materials in Hyperspectral Images

    Get PDF
    The major challenges in hyperspectral (HS) imaging and data analysis are expensive sensors, high dimensionality of the signal, limited ground truth, and spectral variability. This dissertation develops and analyzes machine learning based methods to address these problems. In the first part, we examine one of the most important HS data analysis tasks-vegetation parameter estimation. We present two Gaussian processes based approaches for improving the accuracy of vegetation parameter retrieval when ground truth is limited and/or spectral variability is high. The first is the adoption of covariance functions based on well-established metrics, such as, spectral angle and spectral correlation, which are known to be better measures of similarity for spectral data. The second is the joint modeling of related vegetation parameters by multitask Gaussian processes so that the prediction accuracy of the vegetation parameter of interest can be improved with the aid of related vegetation parameters for which a larger set of ground truth is available. The efficacy of the proposed methods is demonstrated by comparing them against state-of-the art approaches on three real-world HS datasets and one synthetic dataset. In the second part, we demonstrate how Bayesian optimization can be applied to jointly tune the different components of hyperspectral data analysis frameworks for better performance. Experimental validation on the spatial-spectral classification framework consisting of a classifier and a Markov random field is provided. In the third part, we investigate whether high dimensional HS spectra can be reconstructed from low dimensional multispectral (MS) signals, that can be obtained from much cheaper, lower spectral resolution sensors. A novel end-to-end convolutional residual neural network architecture is proposed that can simultaneously optimize both the MS bands and the transformation to reconstruct HS spectra from MS signals by analyzing a large quantity of HS data. The learned band can be implemented in sensor hardware and the learned transformation can be incorporated in the data processing pipeline to build a low-cost hyperspectral data collection system. Using a diverse set of real-world datasets, we show how the proposed approach of optimizing MS bands along with the transformation rather than just optimizing the transformation with fixed bands, as proposed by previous studies, can drastically increase the reconstruction accuracy. Additionally, we also investigate the prospects of using reconstructed HS spectra for land cover classification

    Spectral-Spatial Neural Networks and Probabilistic Graph Models for Hyperspectral Image Classification

    Get PDF
    Pixel-wise hyperspectral image (HSI) classification has been actively studied since it shares similar characteristics with related computer vision tasks, including image classification, object detection, and semantic segmentation, but also possesses inherent differences. The research surrounding HSI classification sheds light on an approach to bridge computer vision and remote sensing. Modern deep neural networks dominate and repeatedly set new records in all image recognition challenges, largely due to their excellence in extracting discriminative features through multi-layer nonlinear transformation. However, three challenges hinder the direct adoption of convolutional neural networks (CNNs) for HSI classification. First, typical HSIs contain hundreds of spectral channels that encode abundant pixel-wise spectral information, leading to the curse of dimensionality. Second, HSIs usually have relatively small numbers of annotated pixels for training along with large numbers of unlabeled pixels, resulting in the problem of generalization. Third, the scarcity of annotations and the complexity of HSI data induce noisy classification maps, which are a common issue in various types of remotely sensed data interpretation. Recent studies show that taking the data attributes into the designing of fundamental components of deep neural networks can improve their representational capacity and then facilitates these models to achieve better recognition performance. To the best of our knowledge, no research has exploited this finding or proposed corresponding models for supervised HSI classification given enough labeled HSI data. In cases of limited labeled HSI samples for training, conditional random fields (CRFs) are an effective graph model to impose data-agnostic constraints upon the intermediate outputs of trained discriminators. Although CRFs have been widely used to enhance HSI classification performance, the integration of deep learning and probabilistic graph models in the framework of semi-supervised learning remains an open question. To this end, this thesis presents supervised spectral-spatial residual networks (SSRNs) and semi-supervised generative adversarial network (GAN) -based models that account for the characteristics of HSIs and make three main contributions. First, spectral and spatial convolution layers are introduced to learn representative HSI features for supervised learning models. Second, generative adversarial networks (GANs) composed of spectral/spatial convolution and transposed-convolution layers are proposed to take advantage of adversarial training using limited amounts of labeled data for semi-supervised learning. Third, fully-connected CRFs are adopted to impose smoothness constraints on the predictions of the trained discriminators of GANs to enhance HSI classification performance. Empirical evidence acquired by experimental comparison to state-of-the-art models validates the effectiveness and generalizability of SSRN, SS-GAN, and GAN-CRF models
    • …
    corecore