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Abstract

Pixel-wise hyperspectral image (HSI) classification has been actively studied since it
shares similar characteristics with related computer vision tasks, including image classifica-
tion, object detection, and semantic segmentation, but also possesses inherent differences.
The research surrounding HSI classification sheds light on an approach to bridge com-
puter vision and remote sensing. Modern deep neural networks dominate and repeatedly
set new records in all image recognition challenges, largely due to their excellence in ex-
tracting discriminative features through multi-layer nonlinear transformation. However,
three challenges hinder the direct adoption of convolutional neural networks (CNNs) for
HSI classification. First, typical HSIs contain hundreds of spectral channels that encode
abundant pixel-wise spectral information, leading to the curse of dimensionality. Second,
HSIs usually have relatively small numbers of annotated pixels for training along with large
numbers of unlabeled pixels, resulting in the problem of generalization. Third, the scarcity
of annotations and the complexity of HSI data induce noisy classification maps, which are
a common issue in various types of remotely sensed data interpretation.

Recent studies show that taking the data attributes into the designing of fundamental
components of deep neural networks can improve their representational capacity and then
facilitates these models to achieve better recognition performance. To the best of our
knowledge, no research has exploited this finding or proposed corresponding models for
supervised HSI classification given enough labeled HSI data. In cases of limited labeled
HSI samples for training, conditional random fields (CRFs) are an effective graph model to
impose data-agnostic constraints upon the intermediate outputs of trained discriminators.
Although CRFs have been widely used to enhance HSI classification performance, the
integration of deep learning and probabilistic graph models in the framework of semi-
supervised learning remains an open question.

To this end, this thesis presents supervised spectral-spatial residual networks (SSRNs)
and semi-supervised generative adversarial network (GAN) -based models that account for
the characteristics of HSIs and make three main contributions. First, spectral and spatial
convolution layers are introduced to learn representative HSI features for supervised learn-
ing models. Second, generative adversarial networks (GANs) composed of spectral/spatial
convolution and transposed-convolution layers are proposed to take advantage of adver-
sarial training using limited amounts of labeled data for semi-supervised learning. Third,
fully-connected CRFs are adopted to impose smoothness constraints on the predictions of
the trained discriminators of GANs to enhance HSI classification performance. Empiri-
cal evidence acquired by experimental comparison to state-of-the-art models validates the
effectiveness and generalizability of SSRN, SS-GAN, and GAN-CRF models.
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Chapter 1

Introduction

Hyperspectral image (HSI) classification means labeling hyperspectral pixels in imagery as
belonging to pre-defined land cover categories. This task forms the cornerstone of a wide
range of applications, including object detection, anomaly detection, semantic segmenta-
tion, and land-cover mapping [27,47,86, 87, 100]. HSIs possess two distinctive characteris-
tics different from natural rgb images. First, HSI pixels consist of hundreds of contiguous
spectral bands. This abundant spectral information makes the accurate identification of
corresponding ground cover classes possible [88]. Second, HSI pixels sampled from ho-
mogeneous areas are highly correlated. This spatial correlation provides complementary
information to spectral signatures for precise mapping [46]. These two differences prevent
machine learning models, e.g. convolutional neural networks (CNNs), that achieve high
accuracy for natural image recognition from directly transferring their successes to HSI
classification.

Traditional pixel-level HSI classification models mainly concentrate on two steps:

1. Feature engineering: Feature engineering methods include feature selection (band
selection) and feature extraction [31]. The main objectives of feature engineering are to
reduce the high dimensionality of HSI pixels and extract the most discriminative features
or bands [85]. Feature extraction approaches usually learn representative features through
nonlinear transformation. Unlike feature extraction, feature selection methods try to find
the most representative features from raw HSIs without transforming them to retain their
physical meaning [69].

2. Classifier training: Discriminative and generative are two main approaches to
determine the parameters of linear classifiers using the features obtained from the feature

1



engineering step. Discriminative methods are used to model the projection from input data
to their annotations or to model the conditional probabilities, like logistic regression and
support vector machine (SVM). In contrast, generative models are adopted for modeling
the joint distribution of input data and their labels, like naive Bayes model.

Although the two-step paradigm has been used for HSI classification by a lot of research,
these classic methods suffer from two drawbacks:

1. Low generalizability: The adoption of dimension reduction methods leads to
inevitable loss of information and therefore the extracted or selected features usually do
not generalize well to other applications.

2. Shallow representation: The shallow learning methods (e.g., logistic regression)
or band selection being applied before the linear classifiers has limited representational
capacity to fully utilize the abundant spectral and spatial HSI features.

Therefore, the objective of this dissertation is to design specific convolutional blocks
that embed HSI attributes along with novel deep neural networks built consisting of these
blocks, while achieving high classification accuracy compared to state-of-the-art deep learn-
ing models in multiple cases.

1.1 Problem Definition

Suppose an HSI dataset contains n labeled samples XTr = {XTr
i }ni=1 ∈ Rw×w×b and m

one-hot labels yTr = {yTr
j }mj=1 ∈ R1×1×L for training. W and B denote the spatial and

spectral sizes of HSI samples, respectively. L represents the total number of land cover
categories. Machine learning methods address this task by searching for a non-linear trans-
formation function F (·; Θ,M) to fit training data {XTr, yTr} such that this trained model
can generalize to unseen HSI samples XV a = {XV a

i }li=1 ∈ Rw×w×b and make reasonable
predictions. Θ and M denote the parameters to be learned and the model to be designed,
respectively. However, the analytical solutions are non-trivial to compute as a result of
the high dimension of HSI samples and the hierarchical architecture of neural networks.
Therefore, the optimal parameters Θ∗ of a given model M are indirectly approximated by
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an equivalent optimization problem as follows:

Θ∗ = argmin
Θ

Loss(yTr, ŷTr)

= argmin
Θ

Loss(yTr, F (XTr; Θ,M))

= argmin
Θ

− 1

N

∑N

i=1

∑L

j=1
yTr
ij logFij(X

Tr; Θ,M),

(1.1)

where cross entropy loss is used to measure the discrepancy between predictions ŷTr =
F (XTr; Θ,M) and targets yTr. When n = m, in which XTr contains only labeled samples,
HSI classification is a typical supervised learning task. When n > m, in which extra
unlabelled data are used during training, this problem belongs to semi-supervised learning.
Assume that optimal parameters of different models can be learned. To achieve high HSI
classification performance, the key point lies in designing network modules with data-
specific attributes that can facilitate extracting discriminative spectral-spatial HSI features.

1.2 Challenges and Objectives

Recent studies suggest that CNNs can extract discriminative features from images for vision
related tasks and multiple works have adopted deep learning models for HSI classification
and achieved promising performance [8, 48, 91]. However, there are still three challenges
that hinder deep neural networks from offering precise pixel-wise HSI classification maps:

1. Hundreds of spectral bands: The first challenge derives from the characteristics
of HSIs, which comprise two spatial dimensions and one spectral dimension, specially
the hundreds channels in the spectral dimension make it hard to directly adopt the deep
learning models to HSI analysis. Many papers indicate that both spectral and spatial
features play important roles in precise HSI interpretation. However, most deep learning
applications for HSI classification overlook the distinctive characteristics of this remotely
sensed data.

2. Limited annotated samples: The second challenge stems from the high cost of
and difficulty in obtaining a large amount of labeled data for HSIs. The shortage of labelled
pixels limits the classification performance of deep learning models. Many papers indicate
that CNNs require a large amount of training data and propose methods to augment
training data via adding noise to HSI pixels [8]. Additionally, [48] presents a pixel-pair
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approach that samples two pixels independently and couples them as a group for the
purpose of enlarging the number of HSI samples for training.

3. Noisy classification maps: The third challenge is caused by the complex spatial
distribution of HSIs and the similarities between HSI samples. Also, the second challenge
contribute to the fact that classification maps generated by CNNs tend to be noisy and have
spurious object edges. How to utilize data-agnostic smoothness priors and large numbers
of unlabeled HSI pixels to filter out noisy remain open questions to explore.

The objectives of the designed models are to embed HSI attributes into the designing of
special convolution blocks, to alleviate the shortage of labeled HSI samples, and to generate
less noisy HSI classification outputs, respectively.

1.3 Thesis Contributions

The contributions of this thesis are listed as follows:

1. A novel spectral-spatial residual network (SSRN) that integrates the spectral-spatial
attributes of HSIs into the designing of convolution layers is proposed for supervised
HSI classification, which is described in Chapter 3,

2. A novel spectral-spatial generative adversarial network (SS-GAN) that constructs
a semi-supervised learning framework to take advantage of adversarial training is
introduced for semi-supervised HSI classification, which is described in Chapter 4,
and

3. A fully connected conditional random field that imposes graph constraints on the
softmax outputs of trained models using limited numbers of labeled HSI samples
is studied to improve semi-supervised classification outputs, which is described in
Chapter 5.
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Chapter 2

Overview of HSI Classification Methods

“ In deep learning, the algorithms we use now are versions of the algorithms we were
developing in the 1980s, the 1990s. People were very optimistic about them, but it turns
out they did not work too well. Now we know the reason is they did not work too well
is that we did not have powerful enough computers, we did not have enough data sets to
train them. If we want to approach the level of the human brain, we need much more
computation, we need better hardware. ”

– Geoffrey Hinton
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This chapter presents an overview of HSI representation learning methods to improve
classification accuracy, and a discussion about in which situation these methods should
be adopted as well as their strengths and shortcomings. The mathematical formulation of
designed models and their related works are provided in following chapters. An overview
of supervised HSI classification is presented in Chapter 3. An overview of semi-supervised
HSI classification is presented in Chapter 4. An overview of graphical probabilistic models
for boosting HSI classification results is presented in Chapter 5.

2.1 Types of Representation Learning

Representation learning or feature learning plays the crucial role for finding relevant pat-
terns to be judged from and therefore achieving high HSI classification accuracy in various
circumstances. According to how training data being used, HSI classification methods can
be classified into four mainstream representation learning branches:

1. Methods based on supervised feature learning [31,46,88,99]

2. Methods based on unsupervised feature learning [83,84,103]

3. Methods based on semi-supervised feature learning [83,84,103]

4. Methods based on probabilistic graphical constraints [29,66,77,94,95]

2.2 Supervised Methods

Supervised feature learning methods use sample-label pairs {(X1, Y1), ...(XN , YN)} to train
models M parameterized by Θ, such that trained models M(·; Θ) represent the mapping
from input space of {Xi} to target space of {Yi} and this mapping can generalize to unseen
testing data {Xt}. The underlying assumption herein is that the training data {Xi} and
testing data {Xt} are sampled from the same data distribution. The supervised learning
methods can be further subdivided into two types: 1) discriminative approaches, 2) gener-
ative approaches. Discriminative approaches make predictions on input features without
modeling a probability distribution. Traditional discriminative approaches include linear
regression, logistic regression, decision trees, and support vector machines [66]. Since these
approaches lack of representational capacity, therefore the distinctiveness of extracted fea-
tures used as input of the classifiers decide classification accuracy. Generative approaches
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model joint distribution of {X, Y } and assume that targets {Y } follow certain priors (e.g.
Gaussian distribution). Then, the marginal distribution P (Y |X) are used to make pre-
diction on unseen data. Typical generative approaches include Gaussian Mixture model,
Hidden Markov model, and Bayesian Networks [59]. Although the prior distribution as-
sumption make the generative model more explainable and robust to missing data, this
assumption is not flexible enough to generalize to complicated scenarios. In general, the
one-to-one correspondence of data and annotations {Xi, Yi} enables the supervised learning
methods to obtain most accurate classification results among all feature learning branches.
Methods based on supervised learning are mainly useful for circumstances that the amount
of labeled data are large enough given the complexity of selected models to support dis-
criminative feature learning, or high accuracy instead of computationally efficiency is the
priority.

2.3 Unsupervised Methods

Unsupervised feature learning methods use only samples {Xi} without annotation to learn
their shared features that can support the training of classifiers that follows. The under-
lying assumption herein is that learned features extracted from unlabeled training sam-
ples {Xi} can increase the distance of samples between different classes and decrease the
distance of samples within same classes in feature spaces. Typical unsupervised feature
learning approaches include principle component analysis (PCA), auto-encoders(AEs), gen-
erative adversarial networks (GANs) [22]. No annotation involvement in feature learning
limits the usage of unsupervised learning approaches to achieve high classification accuracy,
and therefore this research branch is more useful for data generating tasks [99]. Methods
based on unsupervised learning can benefit circumstances that the annotation of samples
is hardly available, or the classification task is trivial to the extent that unsupervisedly
learned features can be easily clustered into separable groups.

2.4 Semi-supervised Methods

Intuitively, semi-supervised feature learning stands between supervised and unsupervised
learning. Semi-supervised methods usually use a small amount of labeled samples {Xi, Yi}
and a large amount of unlabeled samples {Xj} for training to learn the mapping from
data space to target space. To make use of unlabeled data {Xj}, smoothness assumption
or manifold assumption will be used to connect labeled and unlabeled data via iterative
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propagating predictions from them. Typical semi-supervised feature learning approaches
includes generative models, graph-based methods, heuristic approaches. It is worth to note
that the difference of generative models used here compared to those used for supervised
learning lies in the model parameters Θ are used to fit both labeled {Xi} and unlabeled
data {Xj} during training. The usage of limited amount of annotations make this feature
learning branch outperforms its unsupervised counterparts, but underperforms supervised
ones. Methods based on semi-supervised learning can benefit circumstances that the lim-
ited labels of samples are available and large amount of unlabeled data share similar data
distribution with labeled ones used for training.

2.5 Probabilistic Graphical Methods

Probabilistic graphical models are an approach that models joint probability distribution
P (Y,X) or conditional probability distribution P (Y |X). This approach integrates graph
theory and probability modeling, imposing smoothness constraints as priors on data or label
distributions [7, 89]. Typical probabilistic graphical models include Markov random fields
(MRFs) and conditional random fields (CRFs). MRFs model joint distribution P (Y,X)
and share the advantages and disadvantages of common generative models in the sense
that they are suitable for generating synthetic, but not for delivering high classification
accuracy. On the other hand, CRFs directly model conditional probability distribution
P (Y |X) and is the most widely used graphical approach. The underlying assumption
herein is a smoothness prior whereby neighboring pixels with similar spectral signatures
tend to have the same labels [94]. Since CRFs can be regarded as a structured generalization
of multinomial logistic regression, the conditional probability distribution of a CRF takes
the form as follows:

Prob(Y |Z) = exp(−E(Y |Z))∑
Y=y exp(−E(Y = y|Z))

, (2.1)

where Y and Z denote output random variables and their corresponding observed features.
E(·) is an energy function that models the joint probability distribution of Y and Z.
The optimal random variables can be calculated by the maximum a posteriori (MAP)
estimation:

Y MAP = argmax
Y

Prob(Y |Z). (2.2)

However, equation (2.2) is intractable to solve directly for image recognition tasks, and then
approximation methods like message passing algorithm are used to make it feasible to solve
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[36]. Methods based on probabilistic graphical models are useful for circumstances that
the smoothness assumption can benefit classification or segmentation results, especially
the case that labelled samples are scarce and therefore mapping outputs suffer from noise.

2.6 Discussion

According to the above description, the most promising methods to achieve high HSI clas-
sification accuracy are supervise and semi-supervised feature learning approaches. Given
enough labeled data for training, supervised feature models are undoubtedly the best one
to employ. Given labeled samples is too few to make a reasonable estimation of data
distribution, semi-supervised approaches that take advantage unlabeled data appear to
be a competitive choice. However, both these two methods involve some drawbacks to
overcome.

For supervised methods, the available amount of training and testing samples in the
widely studied HSI datasets are relatively small compared to a large number of annotated
data in computer vision community [39]. This is problematic because models with high
representational capacity need large numbers of samples to train, and small numbers of
training samples can yield overfitting to these samples with the loss of generality. Moreover,
hundreds of spectral channels of each HSI pixel make the traditional supervised methods
more vulnerable to the "curse of dimensionality", which means the number of samples that
required to make accurate estimation grow exponentially with the increase of dimension of
feature space. Many research works adopted dimension reduction methods to alleviate this
phenomenon [88]. However, the dimension reduction methods inevitably lead to the loss
of useful information because it is hard to directly judge which features are discriminative.

For semi-supervised methods, the main problem derive from the assumption that la-
beled and unlabeled data share the same data distribution. If this assumption holds, the
unlabeled data is helpful to enhance classification results. Otherwise, unifying labeled and
unlabeled data for training brings detriment to classification accuracy. Additionally, since
limited annotated samples are used for training, the classification output tend to be noisy.
To mitigate the noisy classification maps, CRFs can used to add the graphical smoothness
constraint. However, traditional CRFs only impose this prior on neighboring samples and
adding global constraints is computationally infeasible.

Therefore, to achieve high classification performance, the proposed supervised models
should overcome the "curse of dimensionality" and learn discriminative features from train-
ing HSI samples. The proposed semi-supervsied models should find useful unlabeled data
for training and incorporate probabilistic graph models that suitable for HSI classification.
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Chapter 3

Supervised Spectral-Spatial Networks
for pixel-wise Classification

“ We do not believe that having the newest computer or the largest cluster is the key to
success, but rather utilizing modern techniques and the latest research with a clear under-
standing of the problem we are trying to solve. ”

– Jeremy Howard
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This chapter presents an end-to-end spectral-spatial residual network (SSRN) that takes
raw 3D volumes as input data without feature engineering for hyperspectral image clas-
sification. In this network, the spectral and spatial residual blocks consecutively learn
discriminative features from abundant spectral signatures and spatial contexts in hyper-
spectral imagery (HSI). The proposed SSRN is a supervised deep learning framework that
alleviates the declining-accuracy phenomenon of other deep learning models. Specifically,
the residual blocks connect every other 3D convolutional layer through identity mapping,
which facilitates the back propagation of gradients. Furthermore, batch normalization is
adopted on every convolutional layer to regularize the learning process and improve the
classification performance of trained models.

3.1 Conventional Methods

Classifying every pixel with a certain land cover type is the cornerstone of remotely sensed
data analysis, which spans a broad range of applications, including image segmentation,
object recognition, land-cover mapping, and anomaly detection [15, 18, 19, 38, 71, 81, 98].
Among various types of remotely sensed data, the attributes of HSIs make them a acti-
vated studied objective to bridge the fields of computer vision and remote sensing [27, 43,
47,74,75,86,87]. Two major characteristics of HSI should be taken into account to obtain
discriminative features for HSI classification. First, abundant spectral information, which
derives from hundreds of contiguous spectral bands, makes the accurate identification of
corresponding ground materials possible [88]. Second, high spatial correlation, which orig-
inates from homogeneous areas in HSI, provides complementary information to spectral
features for precise mapping [46].

To take advantage of abundant spectral bands, traditional pixel-wise HSI classifica-
tion models mainly concentrate on two steps: feature engineering and classifier training.
Feature engineering methods include feature selection (band selection) and feature extrac-
tion [31]. The main objectives of feature engineering are to reduce the high dimensionality
of HSI pixels and extract the most discriminative features or bands. Next, general-purpose
classifiers are trained using the discriminative features obtained from the feature engi-
neering step. Feature extraction approaches usually learn representative features through
nonlinear transformation. For example, [85] integrated multiple features derived from dif-
ferent kinds of dimensionality reduction methods to train SVM classifiers. Unlike feature
extraction, feature selection methods try to find the most representative features from
raw HSIs without transforming them to retain their physical meaning. For instance, [69]
adopted manifold ranking as an unsupervised feature selection method, which chooses the
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most representative bands for training the classifiers that follow. Moreover, a multitask
joint sparse representation based method [83] integrated band selection method with a
smooth prior imposed by Markov random field. These two band selection based paradigms
used spectral bands from all available pixels for feature selection and can be interpreted as
semi-supervised learning methods.

On the other hand, there are two ways to incorporate spatial information for HSI
classification: spatialized input and post-processing. The spatialized input methods impose
feature engineering step on 3D cuboids obtained from HSI. Many papers suggested that
methods expanding input data with more spatial information can improve classification
performance [32, 33]. Among these methods, support vector machines (SVMs) are the
most commonly used classifiers for HSI classification, because SVMs perform robustly with
high dimensional input data [17, 54]. For example, [55] employed a region-based kernel to
extract spectral-spatial features on which the learned SVM classifier identifies the categories
of hyperspectral pixels. In contrast, the post-processing approaches have taken the prior
knowledge of smoothness into consideration that neighboring pixels with similar spectral
information are likely to belong to the same land cover categories. For instance, [66]
incorporated a probabilistic graphical model as the post-processing step to improve the
classification outcomes of kernel SVMs. Although many works use typical classification
frameworks, which are composed of feature extractors followed by trainable classifiers,
they suffer from two drawbacks. First, the feature engineering step normally does not
generalize well to other scenarios. Second, the de facto one-layer nonlinear transformation
(e.g., kernel methods) being applied before the linear classifiers has limited representation
capacity to fully utilize the abundant spectral and spatial features.

3.2 Deep Learning Methods

In the face of these shortcomings of feature engineering based frameworks, supervised deep
learning models have attracted increased attention, due to the fact that the objective
functions of deep learning models directly focus on classification in lieu of two independent
steps. The fundamental philosophy of deep learning is to let the trained model itself decide
which features are more important than other features with fewer constraints imposed by
human beings. In other words, deep learning frameworks simultaneously learn feature
representation and corresponding classifiers through training process. Furthermore, multi-
layer neural networks can extract robust and discriminative features of HSI and outperform
SVMs [9,10]. For example, the stacked autoencoders (SAEs) were used as feature extractors
to capture the representative stacked spectral and spatial features with a greedy layer-wise
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pre-training strategy [9]. Similarly, the potential of deep belief networks (DBNs) for HSI
classification was explored in [10]. However, both models suffer the same problem of spatial
information loss, which is caused by the requirement for one-dimensional input data.

Recently, convolutional neural networks (CNNs) and their extensions have obtained
unprecedented advances in computer vision tasks [37, 39]. Multiple papers have demon-
strated that CNNs can deliver state-of-the-art results using spatialized input for HSI clas-
sification [8, 48, 91]. For example, [91] used CNNs to extract spatial features, which were
integrated with spectral features that learned from balanced local discriminant embed-
ding, for HSI classification. However, the input of the CNN models are the three principal
components of original HSIs, which means the spatial feature extraction process still loses
some spectral-spatial information. A CNN-based feature extractor was proposed in [48],
which can learn discriminative representations from pixel pairs and use a voting strategy
to smooth final classification maps. In addition, 3D CNNs were adopted to extract deep
spectral-spatial features directly from raw HSIs and delivered promising classification out-
comes [8]. Similarly, [49] further studied 3D CNNs for spectral-spatial classification using
input cuboids of HSIs with smaller spatial size. These models generate thematic maps
using an approach that can directly process raw HSIs, whereas the classification accuracy
of the CNN models decreases when the network becomes deeper.

To resolve this problem, inspired by [24], a supervised spectral-spatial residual net-
work (SSRN1) is proposed with consecutive learning blocks that takes the characteristics
of HSI into account. The designed spectral and spatial residual blocks extract discrimi-
native spectral-spatial features from HSI cuboids and can be regarded as an extension of
convolutional layers in CNNs. The SSRN has a deeper structure than those of 3D CNNs
used in [8,48,49,91], and contains shortcut connections between every other convolutional
layer. Hence, the SSRN can learn robust spectral-spatial representations from original
HSIs. Similar to the SSRN, [41] incorporated residual learning with fully convolutional
layers to form a contextual CNN. However, this method fails to distinguish spectral fea-
tures and spatial features. Thus, this thesis investigates the effectiveness of two types of
residual architecture toward the spectral-spatial feature learning for HSI classification, and
their robustness in different scenarios.

Compared to a large number of annotated data in computer vision and pattern recog-
nition communities, which play a significant role in the unprecedented success achieved
by deep learning models [39], the available amount of training and testing samples in
the widely studied HSI datasets are relatively small. Moreover, the unbalanced amounts
of differently labeled samples undermine the accuracy of HSI classification. In addition,

1https://github.com/zilongzhong/SSRN
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Figure 3.1: Spectral-Spatial Residual Network -based framework for HSI classification.
In the upper section, the training group Z1 and their corresponding labels are used for
updating the parameters of network. The validation group Z2 and their corresponding
labels Y 2 are used for monitoring the interim models generated in the training stage.
In the lower section, the testing group Z3 is employed for assessing the optimal trained
network.

the input data of SSRN are 3D cuboids of raw HSI and the multidimensional input data
brings more challenges. Therefore, this chapter aims to study the generalization ability of
the SSRN on HSI datasets with large and small training sizes, high and medium spatial
resolution, and various land-cover types with uneven samples for different categories.

3.3 Proposed Network

Figure 3.1 shows the whole deep learning framework of HSI classification based on SSRN.
In this framework, all available annotated data are separated into three groups: training,
validation, and testing groups for each dataset. Suppose the HSI dataset X contains
N labeled pixels {x1, x2, ..., xN} ∈ R1×1×b and Y = {y1, y2, ..., yN} ∈ R1×1×L is the set
of corresponding one-hot label vectors, where b and L represent the numbers of spectral
bands and land cover categories, respectively. Neighboring cuboids centered at pixels in X
form a new group of dataset Z = {z1, z2, ..., zN} ∈ Rw×w×b. To fully utilize the spectral and
spatial information provided by HSIs, the proposed networks take cuboids of size w×w×b
from raw data as input, where is the short width of 3D cuboids in training group Z1,
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validation group Z2, and testing group Z3 in Figure 3.1. Their corresponding label vector
sets are Y 1, Y 2, and Y 3. For example, the size of HSI cuboids for the Indian Pines dataset
is 7 × 7 × 200. Therefore, the objective of training process is to update the parameters
of SSRN till the model can make high-accuracy predictions Ŷ 3 with regard to the ground
truth labels Y 3 given the neighboring cuboids Z3.

After the architecture of deep learning models is built and the hyper parameters for
training are configured, the models are trained for hundreds of epochs using the training
group Z1 and their ground truth label vector set Y 1. In this process, the parameters of
SSRN are updated through back propagating the gradients of the cross-entropy objective
function:

CE(ŷ, y) = −
∑L

i=1
yilog

eŷi∑L
j=1 e

ŷj

=
∑L

i=1
yilog

∑L
j=1 e

ŷj

eŷi

=
∑L

i=1
yi(log

∑L

j=1
eŷj − ŷi),

(3.1)

where CE(·) represents the cross-entropy function. This function measures the differ-
ence between predicted label vector ŷ = [ŷ1, ŷ2, ..., ŷL] and ground truth label vector y =
[y1, y2, ..., yL] , which is the vector output of the last fully connected layer without using
softmax function.

The validation group Z2 is used for monitoring training process by measuring the
classification performance of interim models, which are intermediate networks generated
during the training stage, to select the network with the highest classification accuracy.
Finally, the testing group Z3 is employed for assessing the generalizability of the trained
SSRN through calculating classification metrics and visualizing thematic maps.

3.3.1 3D Convolutional Layer with Batch Normalization

Deep learning models consist of multiple layers of nonlinear neurons that can learn hierar-
chical representations through a large number of labeled images [37]. CNNs have achieved
or surpassed human level intelligence in several perception tasks [39,51], because convolu-
tional layers enable CNNs to learn more discriminative features with sparsity constraint.
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Figure 3.2: 3D Convolutional layer with batch normalization. The (k+1)th layer conducts
a 3D convolution of input feature cuboids Xk and a convolutional filter bank Hk+1 and
generates output feature cuboids Xk+1.

Figure 3.3: Spectral residual block for spectral feature learning. This block includes
two successive 3D convolutional layers, and a skip connection directly adds input feature
cuboids Xp to output feature cuboids Xp+2.

In this thesis, 3D convolutional layers are adopted as the basic element of the SSRN. In
addition, batch normalization [28] is conducted at every convolutional layer in SSRN. This
strategy makes the training processing of deep learning models more efficient. As shown
in Figure 3.2, if the (k + 1)th 3D convolutional layer has nk input feature cuboids of size
wk × wk × dk , a convolutional filter bank that contains nk+1 convolutional filters of size
ak+1 × ak+1 ×mk+1, and the subsampling strides of (s1, s1, s2) for the convolutional opera-
tion, then this layer generate nk+1 output feature cuboids of size wk+1 × wk+1 × dk+1, where
the spatial width wk+1 = ⌊1 + (wk − ak+1)/s1⌋ and the spectral depth dk+1 = ⌊1 + (dk −mk+1)/s2⌋.
The ith output of (k + 1)th 3D convolutional layer with batch normalization (CONVBN)
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Figure 3.4: Spatial residual block for spatial feature learning. This block includes two suc-
cessive 3D convolutional layers, and a skip connection directly adds input feature cuboids
Xq to the output feature cuboids Xq+2.

can be formulated as

Xk+1
i = R(

∑nk

j=1
X̂k

j ∗Hk+1
i + bk+1

i ) (3.2)

µ(Xk) =
1

m

∑nk

j=1
Xk

j (3.3)

σ2(Xk) =
1

m

∑nk

j=1
(Xk

j − µ(Xk))2 (3.4)

X̃k =
Xk − µ(Xk)√
σ2(Xk) + ϵ

(3.5)

X̂k = γX̃ + β (3.6)

where Xk
j ∈w×w×d is the jth input feature tensor of the (k + 1)th layer, X̂k is the normal-

ization result of batch feature cuboids Xk in the kth layer, µ(·) and σ2(·) represent the
expectation and variance of the input feature tensor, respectively. ϵ is an arbitrarily small
positive quantity to avoid the denominator be zero. γ and β are parameters to be learned.
Hk+1

i and bk+1
i denote the parameters and bias of the ith convolutional filter bank in the

(k + 1)th layer, ∗ represents 3D convolutional operation, and R(·) is the Rectified Linear
Unit (ReLU) activation function that sets elements with negative numbers to zero.
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3.3.2 Spectral and Spatial Residual Blocks

Although CNN models have been used for HSI classification and achieved state-of-the-art
results, it is counterintuitive that, after several layers, the classification accuracy decreases
with the increase of convolutional layers [8]. This phenomenon stems from the fact that
the representation capacity of CNNs is too high compared to the relative small number of
training samples with the same regularization settings. However, this decreasing-accuracy
issue can be alleviated by adding shortcut connections between every other layer to build
residual blocks [24]. To this end, two residual blocks are designed in a general architecture
to consecutively extract spectral and spatial features from raw 3D HSI cuboids, owing
to the high spectral resolution and high spatial correlation of HSI. As shown in Figure
3.3, a residual block can be regarded as an extension of two convolutional layers. This
architecture enables gradients in higher layers rapidly propagate back to the lower layers,
thereby facilitating and regularizing the model training process.

In the spectral residual blocks, as shown in Figure 3.3, convolution kernels/filters of
size 1×1×m are used in successive filter banks hp+1 and hp+2 for pth and (p+1)th layers,
respectively. At the same time, the spatial size of 3D feature cuboids Xp+1 and Xp+2 is
kept at w×w unchanged through a padding strategy, which means output feature cuboids
copy the values from the border area to the padding area after convolutional operation
in the spectral dimension. Then, these two convolutional layers build a residual function
F (Xp; θ) instead of directly mapping Xp using a skip connection. The spectral residual
architecture can be formulated as follows:

Xp+2 = Xp + F (Xp; θ) (3.7)

F (Xp; θ) = R(X̂p+1) ∗ hp+2 + bp+2 (3.8)

X = R(X̂p) ∗ hp+1 + bp+1 (3.9)

where θ = {hp+1, hp+2, bp+1, bp+2}, Xp+1 represents the n input 3D feature cuboids of
(p + 1)th layer, hp+1 and dp+1 denote the spectral convolution kernels and bias in the
th layer, respectively. In fact, the convolution kernels hp+1 and dp+1 are composed of 1D
vectors, which can be regard as a special case of 3D convolution kernels. The output tensor
of the spectral residual block also includes n 3D feature cuboids.

In the spatial residual block, as illustrated in Figure 3.4, focus is primarily placed on the
spatial feature extraction using n 3D convolution kernels of size a×a×d in successive filter
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Figure 3.5: Spectral-Spatial Residual Network with a 7× 7× 200 input HSI volume. The
network includes two spectral and two spatial residual blocks. An average pooling layer
and a fully connected layer transform a 5 × 5 × 24 spectral-spatial feature volume into a
1× 1× L output feature vector ŷ.

banks Hq+1 and Hq+2 for the two successive layers. The spectral depth d of these kernels
equals to that of the input 3D feature cuboids Xq. The spatial size of feature cuboids
Xq+1 and Xq+2 is kept unchanged at w × w. Thus, the spatial residual architecture can
be formulated as follows:

Xq+2 = Xq + F (Xq; ξ) (3.10)

F (Xq; ξ) = R(X̂q+1) ∗Hq+2 + bq+2 (3.11)

X = R(X̂q) ∗Hq+1 + bq+1 (3.12)

where ξ = {Hq+1, Hq+2, bq+1, bq+2}, Xq+1 represents the 3D input feature volume in the
(q+1)th layer, Hq+1 and bq+1 denote the n spatial convolution kernels in the (q+1)th layer,
respectively. Compared with their spectral counterparts, the convolutional filter banks in
spatial residual blocks comprises of 3D tensors. The output of this block is a 3D feature
volume.
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3.3.3 Spectral-Spatial Residual Network

Considering HSIs contain one spectral dimension and two spatial dimensions, a framework
that consecutively extracts spectral and spatial features for pixel-wise HSI classification
is proposed. As illustrated in Figure 3.5, the SSRN includes a spectral feature learning
section, a spatial feature learning section, an average pooling layer, and a fully connected
layer. Compared to CNN, SSRN alleviated the decreasing-accuracy phenomenon by adding
skip connections between every other layer to formulate the hierarchical feature represen-
tation layers to consecutive residual blocks. The Indian Pines dataset, the 3D samples of
which have the size of 7× 7× 200, is taken as an example to explain the designed SSRN.

The spectral feature learning section includes two convolutional layers and two spectral
residual blocks. In the first convolutional layer, 24 1 × 1 × 7 spectral convolution kernels
with a subsampling stride of (1, 1, 2) convolves the input HSI volume to generate 24 7 ×
7 × 97 feature cuboids. Because the raw input data contains rich and redundant spectral
information, 1 × 1 × 7 vector convolution kernels are used in these blocks. This layer
reduces the high dimensionality of input cuboids and extract low-level spectral features
of HSI. Then, two consecutive spectral residual blocks, which contains four convolutional
layers and two identity mappings, use 24 1 × 1 × 7 vector convolution kernels at each
convolutional layers to learn deep spectral representation. In the spectral residual blocks,
all convolutional layers use padding to keep the sizes of output feature cuboids the same as
input. Following the spectral residual blocks, the last convolutional layer in this learning
section, which includes 128 1×1×97 spectral convolution kernels for keeping discriminative
spectral features, convolves the 24 7× 7 feature tensors to produce a 7× 7 feature volume
as input for spatial feature learning section.

The spatial feature learning section extracts discriminative spatial features using suc-
cessive 3D convolutional filter banks, where the convolution kernels have the same depth
as the input 3D feature volume. The section comprises of a 3D convolutional layer and two
spatial residual blocks. The first convolutional layer in this section reduce the spatial size
of input feature cuboids and extract low level spatial features with 24 3× 3× 128 spatial
convolution kernels, resulting an output 5 × 5 × 24 feature tensor. Then, similar to their
spectral counterparts, the two spatial residual blocks learn deep spatial representation with
4 convolutional layers, all of which use 24 3× 3× 24 spatial convolution kernels and keep
the sizes of feature cuboids unchanged.

After the above two feature learning sections, an average pooling layer (POOL) trans-
forms the extracted 5 × 5 × 24 spectral-spatial feature volume to a 1 × 1 × 24 feature
vector. Next, a fully connected layer (FC) adapts the SSRN to HSI dataset according to
the number of land cover categories and generates a output vector ŷ = [ŷ1, ŷ2, ..., ŷL]. The
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total numbers of trainable parameters (about 360,000) for the SSRN are much larger than
the available training data in the three hyperspectral datasets, which means the network
possesses enough capacity to learn the feature representations of HSI but also tend to over-
fit the training sets. Therefore, batch normalization and dropout [62] are investigated as
regularization strategies to further improve the classification performance of SSRN.

3.4 Summary

In this chapter, two specific residual blocks are designed for HSI classification, and a SSRN
that consists of two consecutive spectral and spatial learning blocks is proposed. The
network configuration and experimental results are reported in Chapter 6. The SSRN
adopts residual connections to mitigate the decreasing-accuracy phenomenon and improve
the HSI classification accuracy. Two consecutive residual blocks learn spectral and spatial
representations separately, through which more discriminative features can be extracted.
Therefore, the SSRN shows the effectiveness of accounting for the characteristics of HSIs in
order to boost HSI classification performance. Unfortunately, training supervised models
requires enough annotations which are expensive in many remote sensing applications. To
this end, the subsequent chapters focus on the cases that annotated HSI samples are rela-
tively small, and design a novel semi-supervised framework that incorporates probabilistic
graphical constraints to address this task.
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Chapter 4

Semi-supervised models for adversarial
training

“ Deep learning allows computational models that are composed of multiple processing lay-
ers to learn representations of data with multiple levels of abstraction. These methods have
dramatically improved the state-of-the-art in speech recognition, visual object recognition,
object detection and many other domains such as drug discovery and genomics. Deep learn-
ing discovers intricate structure in large data sets by using the backpropagation algorithm
to indicate how a machine should change its internal parameters that are used to compute
the representation in each layer from the representation in the previous layer. Deep con-
volutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.
”

– Yann LeCun [39]
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This chapter addresses the hyperspectral image (HSI) classification task with a gen-
erative adversarial network (GAN) -based framework, which is a semi-supervised deep
learning model, and make two contributions. First, four types of convolutional and trans-
posed convolutional layers are designed that consider the characteristics of HSIs to help
with extracting discriminative features from limited numbers of labeled HSI samples. Sec-
ond, semi-supervised GANs are constructed to alleviate the shortage of training samples
by adding labels to them and implicitly reconstructing real HSI data distribution through
adversarial training. This semi-supervised framework leverages the merits of discriminative
and generative models through a game-theoretical approach.

4.1 Semi-supervised Models for HSI classification

Due to their hundreds of spectral bands, the accurate interpretation of hyperspectral im-
ages (HSIs) has attracted significant scholarly attention from the machine learning and
remote sensing communities [30, 45, 83, 101]. Recent studies suggest that supervised deep
learning models can alleviate challenges caused by the high spectral dimensionality of HSIs
and achieve strikingly better classification accuracy [8,50,99]. However, there are still three
challenges that prevent deep learning models from offering precise pixel-wise HSI classifi-
cation maps [65, 82]. First, the high dimensionality of HSI pixels make it hard to directly
use the deep learning models for normal optical images in HSI interpretation. Second, the
shortage of labeled pixels limits the classification performance of deep learning models.
Third, the classification maps generated by deep learning models tend to be noisy and
have spurious object edges. In this chapter, these challenges are analyzed and offer several
suggestions are offered to mitigate them.

In the face of these difficulties, two common semi-supervised learning methods — graph-
based models and generative models — have been adopted to alleviate them [29,77,84,103].
Graph-based models are premised on the smoothness assumption that accentuates geomet-
rically simple classification results. For example, [77] imposed a manifold regularizer on a
Laplacian SVM framework to learn spectral-spatial features for HSI image classification.
Additionally, [29] proposed a dual hypergraph framework that imposes spectral-spatial
constraints by jointly calculating a Laplacian matrix. Although these graph-based semi-
supervised methods take both labeled and unlabeled samples into account, they identify
HSI pixels based on hand-crafted features. Generally, these features learned from fea-
ture engineering steps are difficult to tune or generalize to other cases. Moreover, the
performance of these semi-supervised models largely depends on the quality of unlabeled
data, which is hard to control or standardize. Recently, a generative model called genera-
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Figure 4.1: The architecture of a generative adversarial network, in which the generator
transforms noise vectors to a set of hyperspectral cuboids and the discriminator tries to
distinguish true hyperspectral samples from fake ones.

tive adversarial network (GAN) [22] has attracted a lot of attention for image generation.
For instance, [84] proposed a semi-supervised 1D-GAN for HSI classification, but ignored
the spatial attribute of HSIs that can be used for enhancing classification performance.
Moreover, [103] used convolutional neural networks (CNNs) to build generative adversarial
networks for HSI classification and achieved very promising results. However, the discrim-
inators used in this thesis only use three principled component analysis (PCA) channels of
HSIs and therefore do not fully exploit the spectral characteristic of HSIs.

4.2 Related Work

GANs are unsupervised deep learning models that provide a solution to implicitly estimate
real data distribution and correspondingly generate synthetic samples. Recently, there has
been increasing interest in GANs for unsupervised learning, especially in regards to gener-
ating synthetic images that approximate the distribution of real ones [22, 57]. Compared
with traditional generative methods, GANs are not constrained by Markov fields or explicit
approximation inference. For instance, a deep convolutional GAN [57] that consists of deep
convolutional layers has been proposed to generate high-quality images. The original GAN
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aims for image generation and its variants have generated astonishing controllable and
partially explainable images [59]. The GAN employs a discriminator and a generator to
compete with each other [22,96]. Specifically, the generator generates synthetic examples to
deceive the discriminator, and the discriminator distinguishes real samples from fake ones.
Since their objectives are contradictory, the training of the discriminator and generator of
a GAN can be regarded as a process to find a Nash equilibrium through a game-theoretical
point of view. Therefore, this GAN training can be formulated as a min-max optimization
problem:

min
G

max
D

Loss(D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log (1−D(G(z)))], (4.1)

where D(·) and G(·) represent softmax outputs of a discriminator and synthetic data gen-
erated by a generator, respectively. x and z denote true images and vectors of Gaussian
noise, and they follow the distributions of real HSI data and Gaussian noise, respectively.
GANs produce very promising image generation results in datasets like the MNIST digit
database [40] and the Yale Face database [76], both of which contain compact data distri-
bution and similar image layout.

4.3 Proposed Model

To solve the challenges of HSI classification, a GAN-based semi-supervised deep learning
framework is proposed. Suppose a hyperspectral image X contains m pixels {xi} ∈ Rnx×m,
where nx represents the number of spectral bands. Then, two groups of HSI cuboids are
sampled from X: the labeled group X1 = {X1

i } ∈ Rnx×w×w×ml and the unlabeled group
X2 = {X2

i } ∈ Rnx×w×w×mu , where w, ml, and mu are the spatial width of HSI cuboids,
the number of labeled, and the number of unlabeled HSI samples, respectively. Since each
pixel in X corresponds to a HSI cuboid in {X1

i , X
2
i }, therefore m = ml +mu. The labeled

group X1 has its annotation Y 1 = {y1i } ∈ R(1+ny)×ml , where ny is the number of land cover
classes and y1i [0] (the first entry in a vector y1i ) indicates whether the corresponding HSI
cuboid is fake (1/0 means fake/real). As shown in Figure 3.1, the whole model is composed
of a discriminator, a generator, and a post-processing CRF. Since annotations Y 1 of real
HSI samples are used for training, the discriminator and generator form a semi-supervised
GAN. The generator transforms noise vectors z to synthetic HSI cuboids Z = {Zi}, each
sample of which have the same size as those from X2. The discriminator attempts to
distinguish real HSI cuboids X1 from fake ones Z and to classify real HSI cuboids.

In contrast to updating one discriminative model in supervised deep learning, the train-
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Figure 4.2: A semi-supervised GAN framework for HSI classification. First, in the semi-
supervised GAN, a generator transforms noise vectors z to a set of fake HSI cuboids Z, and
a discriminator tries to distinguish the categorical information as well as the genuineness of
input cuboids that come from X1 or Z. The HSI prediction Ŷ is generated by the trained
discriminator of the spectral-spatial GAN.

ing of a GAN involves searching an equilibrium between the generator and discriminator
by using stochastic gradient descent or similar methods to optimize the parameters of the
GAN. However, GANs are known for their instability in training, and it is almost impossi-
ble to find an optimal equilibrium between their generators and discriminators. Therefore,
an alternating optimization strategy is adopted that successively updates the parameters
of the generator and discriminator in each training iteration to help the discriminator to
learn discriminative features using a small amount of labeled data and a large amount of
synthetic data produced by the generator. When the training of a GAN is completed, the
trained discriminator of the GAN is used to make a prediction about the unlabeled group
X2. Then, a conditional random field is established by using the softmax predictions of
the trained discriminator to initialize random variables Y = {yi} ∈ R(1+ny)×m that are
conditioned on the raw HSI X. Last, mean field approximation is used to optimize the
conditional random field and get a refined classification map Ŷ .
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Figure 4.3: Four basic convolutional and transposed convolutional layers aiming for hyper-
spectral features extraction and generation in semi-supervised GAN-CRF models. (a) - (b)
Spectral and spatial convolutional layers in discriminators. (c) - (d) spectral and spatial
transposed convolutional layers in generators.

4.3.1 Spectral-Spatial Discriminator and Generator

Discriminative deep learning models, such as CNNs and their extensions, have been used
for HSI feature extraction and they have substantially outperformed traditional machine
learning methods given enough training data [8, 99]. However, both these approaches
ignore the inherent difference in spectral dimensionality between hyperspectral images
and common images used in computer vision tasks. Based on the assumption that the
sampled HSI data form a low dimensional manifold embedded in a higher dimensional
space, multiple models have tried to reduce the high dimensionality of HSI pixels and
to learn more efficient representation [86, 91]. However, the dimension reduction process
inevitably leads to the loss of useful information.

The specialty of HSI samples lies in its high spectral dimensionality. Recently, in re-
sponse to this characteristic, [99] implemented a spectral-spatial residual network (SSRN)
that considers the characteristics of HSI by consecutively extracting spectral and spatial
features and obtained state-of-the-art supervised classification results. Therefore, as il-
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lustrated in Figure 3.2 (a)-(b), the idea of spectral and spatial convolution from [99] is
extended to the discriminator of a GAN-CRF model. If X [p+1] and X [q+1] represent the
feature tensors of [p + 1]th spectral and [q + 1]th spatial convolutional layers, then the
spectral and spatial convolutional layers of a discriminator can be formulated as follows:

X [p+1] = LR(w[p+1] ∗X [p] + b[p+1]), (4.2)

X [q+1] = LR(W [q+1] ∗X [q] + b[q+1]), (4.3)

where w[p+1] and W [q+1] represent the [p + 1]th spectral and [q + 1]th spatial convolution
kernels, respectively. b[p+1] and b[q+1] are the biases of these two layers. ∗ denotes the
convolutional operation. LR(·) is a leaky rectified linear unit function:

LR(a) =

{
a, if a > 0,
0.2a, otherwise.

(4.4)

In this work, padding tricks is used to keep the spatial size of feature tensors in most
convolutional layers unchanged. The goal of adopting spectral-spatial convolutional layers
in a GAN-CRF model is to exploit as much information as possible from limited labeled
HSI samples. Similarly, the spectral-spatial idea is stretched to transposed convolutional
layers. As shown in Figure 3.2 (c)-(d), the spectral and spatial transposed convolutional
layers of a generator can be formulated as follows:

z[p+1] = R(h[p+1] ∗T z[p] + b[p+1]), (4.5)

Z [q+1] = R(H [q+1] ∗T Z [q] + b[q+1]), (4.6)

where h[p+1] and H [q+1] represent the [p+1]th transposed spectral and [q+1]th transposed
spatial convolution kernels. b[p+1] and b[q+1] are the biases of these two layers. ∗T denotes
the transposed convolutional operation. R(·) is the rectified linear unit function:

R(a) =

{
a, if a > 0,
0, otherwise.

(4.7)

As shown in Figure 3.2, in contrast to spatial convolutional layers, the transposed
convolutional layers expand the spatial size of feature tensors. In both the discriminator
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and generator of a GAN-CRF model, batch normalization [28] is applied in all convolutional
and transposed convolutional layers to stabilize the training of a GAN.

4.3.2 Semi-supervised GAN

A GAN can be regarded as a combination of discriminative and generative models, where
the discriminator focuses on learning discriminative features, and the generator concen-
trates on implicitly reconstructing real data distribution from random noises. As an exam-
ple of University of Pavia (UP) dataset shown in Figure 4.1, the discriminator comprises
three spectral convolutional layers, three spatial convolutional layers, and a fully connected
layer before a vector of softmax outputs. Conversely, the generator consists of a fully con-
nected layer, three transposed spectral convolutional layers, and four spatial transposed
convolutional layers to produce a synthetic hyperspectral cuboid.

As the generator of a GAN can produce reasonable synthetic images and utilize them to
train the discriminator of the GAN, many research papers have extended the discriminator
of GANs to semi-supervised classification [11,59,84]. Similarly, the GAN is generalized to
the semi-supervised HSI classification task. Since the labeled hyperspectral cuboid group
X1 = {X1

i } has its corresponding annotation group Y 1 = {y1i } , the prediction of trained
discriminators take this form:

Ŷ 1 = D(X1; θD), (4.8)

each element ŷ1i of which has (1 + ny) entries. Specifically, ŷ1i [0] indicates the genuineness
of a hyperspectral cuboid, and ŷ1i [1 : ny] is a vector of softmax outputs that shows the
probabilities of a hyperspectral cuboid belonging to the ny land cover classes. Compared
to the original GAN that discriminates real data from fake ones, a semi-supervised GAN
recognizes the categorical information of HSI cuboids by adding a supervised term to the
loss function of a GAN.

It is worth noting that the objectives of an unsupervised GAN and a semi-supervised
GAN are different and even partially contradictory. The unsupervised GAN aims for
implicitly estimating the true data distribution. On the contrary, the semi-supervised
GAN focuses on data generation using limited labeled samples. Therefore, training a
semi-supervised GAN jeopardize its image generation capability. As presented in [11], a
good semi-supervised GAN requires a bad generator because this generator produces data
outside real data distribution, which in turn helps the discriminator recognizes real data
more accurately. In this way, the generator that produces synthetic HSI cuboids functions
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as a regularizer on the discriminator. Therefore, the loss function regarding optimize the
discriminator of a GAN for semi-supervised HSI classification takes the form:

LSEMI(θD, θG) = LSUP (θD) + LD1(θD) + LD2(θD, θG), (4.9)

where θD and θG are the parameters of a discriminator and a generator, respectively. LSEMI

is the total semi-supervised loss for training the discriminator of a semi-supervised GAN,
LSUP , LD1, and LD2 represent the supervised loss of a discriminator, the unsupervised
loss of a discriminator, and the unsupervised loss of a generator, respectively. These three
terms are formulated as follows:

LSUP (θD) = −EX1∼pdata logD(X1; θD)[1 : ny]

= −EX1∼pdata log Ŷ
1[1 : ny],

(4.10)

LD1(θD) = −EX1∼pdata log(1−D(X1; θD)[0])

= −EX1∼pdata log(1− Ŷ 1[0]),
(4.11)

LD2(θD, θG) = −Ez∼pz logD(G(z; θG); θD)[0]

= −Ez∼pz logD(Z; θD)[0]

= −Ez∼pz log Ŷ
1[0].

(4.12)

It is worth mentioning that LD1 + LD2 also is the part of the total semi-supervised loss
LSEMI that aims at training the bad generator of a GAN [11]. Correspondingly, the loss
function for training the generator of a semi-supervised GAN takes this form:

LG(θD, θG) = −Ez∼pz log (1−D(G(z; θG); θD)[0])

= −Ez∼pz log (1−D(Z; θD)[0])

= −Ez∼pz log(1− Ŷ 1[0]).

(4.13)

The training of a semi-supervised GAN involves two alternating steps of stochastic gra-
dient descent (SGD) or similar optimization methods in each iteration. First, the gradients
of a discriminator −∇θDLSEMI are used to update the parameters θD of a discriminator
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for learning discriminative spectral-spatial HSI features. Second, the gradients of genera-
tors −∇θDLG are employed to update the parameters θG of a generator for improving the
adversarial training of the semi-supervised GAN.

4.4 Summary

This chapter introduces two major challenges of HSI classification and reviews related works
with regard to classifying HSI in a semi-supervised manner. Also, the semi-supervised
GANs include novel spectral or spatial layers, spectral-spatial discriminators and genera-
tors. Section 6.3 offers corresponding model settings, comparative experiments, discussions,
and conclusions. By taking the characteristics of training data into account, the discrim-
inators of SS-GANs extract discriminative HSI features and achieve higher classification
accuracy. Generators of SS-GANs learn feature representation by producing synthetic HSI
samples, and in turn make discriminators more robust to adversaries and learn more dis-
criminative features. Therefore, this adversarial training enables semi-supervised GANs to
deliver superior classification outcomes to supervised deep learning models. Additionally,
adding large numbers of unlabeled real samples to train semi-supervised GANs marginally
improves or even jeopardizes the HSI classification accuracy. Given small numbers of la-
beled samples, the HSI classification results of SS-GAN suffer from noise in homogeneous
areas and therefore further prior constraints are needed for improving semi-supervised HSI
classification performance.
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Figure 4.4: A spectral-spatial discriminator (upper), which comprises consecutive spectral
and spatial feature learning blocks, outputs a vector that contains a indicative entry of
fake or real and categorical probabilities; and a spectral-spatial generator (lower), which
comprises consecutive spectral and spatial feature generation blocks, transforms a vector
of Gaussian noise to a synthetic HSI cuboid.
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Chapter 5

Probabilistic graph models for
post-processing

“ The framework of probabilistic graphical models provides a mechanism for exploiting
structure in complex distributions to describe them compactly, and in a way that allows
them to be constructed and utilized effectively. Probabilistic graphical models use a graph-
based representation as the basis for compactly encoding a complex distribution over a
high-dimensional space.”

– Daphne Koller [35]
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In this chapter, dense conditional random fields (CRFs) are random variables initialized
to the softmax predictions of the trained SS-GANs and conditioned on HSIs to refine clas-
sification maps. Then, this framework integrates the semi-supervised deep learning models
and probabilistic graph models. Even though very small numbers of labeled training are
used HSI samples from the two most challenging and extensively studied datasets (Indian
Pines and University of Pavia), the experimental results in Chapter 6 demonstrated that
spectral-spatial GAN-CRF (SS-GAN-CRF) models, which adopt dense CRFs as a post-
processing step, achieved state-of-the-art accuracy for semi-supervised HSI classification.

5.1 Background

Due to the complexity of HSIs, multiple works utilize the smoothness assumption that
favors geometrically simple classification results [6, 14, 16, 42, 44, 66, 77, 80, 95]. For ex-
ample, [66] incorporated a probabilistic graphical model as the post-processing step to
improve the classification outcomes of kernel support vector machines (SVMs). [94] con-
structed a conditional random field (CRF) with a high-order term to consider more complex
relationships between different spectral bands and obtained very promising outcomes. Ad-
ditionally, [95] incorporated a CRF for pre-processing as well as post-processing to stress
the a priori smoothness and refine the classification maps. The integration of probabilistic
graphical models and supervised classification models can also be conceived as a way to
take the unlabeled samples into account for HSI classification because this step does not
require the ground truth annotation of neighboring pixels. However, most CRF based
models consider only the short-range correlations of pixels and ignore the long-range ones.

In this chapter, inspired by [22] and [7], a semi-supervised deep learning framework is
suggested that consists of a generator, discriminator, and conditional random field built
on top of the discriminator. The discriminator and generator form a generative adversar-
ial network based on game theory. Specifically, the discriminator adopts spectral-spatial
convolutional layers to learn discriminative features from a small amount of labeled data
and unlabeled data, and the generator employs spectral-spatial transposed convolutional
layers to reconstruct HSI samples from vectors of Gaussian noise. Unlike traditional semi-
supervised models, which require a large amount of unlabeled data for training, the pro-
posed framework is data-efficient because the generator creates a high amount of synthetic
data and the discriminator takes a small number of unlabeled samples. In this way, the
GAN-CRF model estimates the real data distribution, mitigates the shortage of annotated
data, and smooths the semi-supervised learning process. In addition, the output of the
discriminator is the unary input term of the subsequent CRF. The binary term of the CRF
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Figure 5.1: A conditional random field is established on two layers. The lower layer X
represent the observed hyperspectral pixels, and the upper layer represents the output
random variables Y .

imposes an a priori smoothness whereby adjacent pixels are more likely to belong to the
same categories. More importantly, the CRF takes on a fully connected form that imposes
a random field on the whole classification map and considers the long-range relationship
between HSI pixels. Thus, by taking a generative adversarial network and considering
the continuity of neighboring pixels, the designed semi-supervised architectures learn local
fine-grain representation as well as high-level invariant features of HSI pixels concurrently.

5.2 Conditional Random Field

Graph models have widely been used for remotely sensed image interpretation tasks to
effectively impose smoothness constraints on classification or segmentation results [7, 89].
CRFs are graphical models that assume a priori continuity whereby neighboring pixels of
similar spectral signatures tend to have the same labels [94]. Since CRFs can be regarded
as a structured generalization of multinomial logistic regression, the conditional probability
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Figure 5.2: A semi-supervised GAN-CRF framework for HSI classification. First, in the
semi-supervised GAN, a generator transforms noise vectors z to a set of fake HSI cuboids
Z, and a discriminator tries to distinguish the categorical information as well as the gen-
uineness of input cuboids that come from X1 or Z. Then, a dense CRF is established by
using the softmax prediction of the trained discriminator about X2 to initialize random
variables Y , which is conditioned on the HSI data X. Mean field approximation is adopted
to offer a refined classification map Ŷ for the post-processing CRF.

distribution of a CRF takes this form:

Prob(y|X) =
exp(−E(y|X))∑
y exp(−E(y|X))

, (5.1)

where y and x denote output random variables and their corresponding observed data. E(·)
is an energy function that models the joint probability distribution of y and x. The optimal
random variables can be calculated by the maximum a posteriori (MAP) estimation:

yMAP = argmax
y

Prob(y|X). (5.2)

However, although Equation (5.2) usually is an intractable problem, it can be solved
through approximation methods [36].
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5.3 GAN-CRF model

CRFs have been widely used to post-process image segmentation results because they can
exploit the predictions of large numbers of unlabeled pixels to enhance image interpretation
performance [6, 92]. Once a semi-supervised GAN has been built, a conditional random
field is established by using the softmax predictions of the trained semi-supervised GAN
about unlabeled HSI cuboids to initialize random variables Y = {y} that are conditioned
on observed raw HSI pixels X. According to Equation (5.1), the conditional probability
distribution of this CRF takes the form:

Prob(y|X) =
exp(−E(y|X))∑
y exp(−E(y|X))

. (5.3)

As illustrated in Figure 1, given that high correlations exists between HSI pixels {xi} in
both short- and long-range, a dense CRF [7] is adopted that includes all pairwise connec-
tions between HSI pixels in the pairwise term of energy function to filter salt and pepper
noises in homogeneous areas. The energy function of the dense CRF can be formulated as:

E(y|X) =
∑
i

E(yi|X) =
∑
i

U(yi|X) +
∑
ij

P (yij|X), (5.4)

where U(·) and P (·) are the unary and pairwise terms of the energy function that is used
to build the dense CRF. yset denotes the set of samples that connect to y. Specifically,
the unary term represents the information cost of pixel-wise softmax predictions {yi} and
the binary term penalizes the wrong labeling of pixel pairs {xi, xj} with similar spectral
signatures. These two terms are formulated as follows:

U(yi|Xi) = D(Xi; θD), (5.5)

P (yij|X) = P (yi, yj, xi, xj)

= µ(yi, yj)K(xi, xj, li, lj),
(5.6)

where li and lj denote the locations of xi and xj, respectively. µ(·) is a compatibility
function, and K(·) is a bilateral Gaussian kernel function. These two functions take the
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forms:

µ(yi, yj) =

{
c, if η(yi) ̸= η(yj)

0, otherwise
(5.7)

K(xi, xj, li, lj) = exp(−(li − lj)
2

2θ2α
− (xi − xj)

2

2θ2β
), (5.8)

where η(·) denotes a one-hot function. θα and θβ are two standard deviations of the
bilateral Gaussian kernels. c is a constant value that could be manually set. Random
variables Y = {yi} of the established dense CRF is initialized to the softmax predictions of
the trained discriminators D(X2; θD) of the semi-supervised GAN according to Equation
(4.8).

In a GAN-CRF model, a GAN is utilized to produce softax predictions about unlabeled
HSI samples X2, and the post-processing CRF is independent of the GAN. Specifically,
the predictions about a large numbers of unlabeled samples are used to initialize the unary
term of the energy function that builds a dense CRF, and therefore the GAN-CRF model
is more suitable in the case where only limited labeled samples are available. Because the
energy function in Equation (5.4) is an intractable problem, a function Q(Y |X) adopted
to approximate the conditional probability distribution Prob(Y |X) of the CRF takes the
form:

Q(Y |X) =
∏
i

Q(yi|X) ≈ Prob(Y |X), (5.9)

in which the tractable function Q(Y |X) is close to Prob(Y |X) in terms of KL-distribution
divergence. Then, the mean field approximation [36] is used to find an optimal solution of
random variables Ŷ for the established dense CRF.

5.4 CRF layers for post-processing

Considering that one of the major benefits of deep learning model comes from the end-
to-end learning, it is intuitive to incorporate graph constraints into deep learning models.
Figure 5.2 shows the architecture of the proposed end-to-end semi-supervised deep learning
model. The CRF layers are adopted to approximate fully connected conditional random
fields. The CRF layers are convolutional layers corresponding to a mean field approxima-
tion, a weighted Gaussian filtering, and a compatibility transformation. The CRF layers
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are initialized and updated according to intermediate multi-class logistic output and raw
input data.

Inspired by [92], this end-to-end model architecture is proposed to combines feature
extraction, semi-supervised learning, and graph constraints into a holistic model instead of
two independent parts in Section 2.2. The reformulation of CRF as a mean filed approxi-
mation can be formulated as the following steps.

First step is message passing that focuses on updating pixel-wise annotation according
to neighbouring information:

Q
(m)
i (l) =

∑
j ̸=i

k(m)(fi, fj)Qj(l), (5.10)

Second step is Gaussian filter weighting that decides the contribution of each kernel:

Q̂i(l) =
∑
m

w(m)Q
(m)
i (l), (5.11)

Third step is compatibility transformation and adding up the unary term to update
the intermediate output of GANs:

Q∗
i (l) =

∑
l′∈L

µ(l, l′)Q̂i(l) + Ui(l), (5.12)

where i denotes the number of iteration. According to these three Equations (3.14)-(3.16),
all steps could be implemented using normal layers in deep learning frameworks. Specifi-
cally, the CRF layers will be implemented in a recurrent format that that solves a mean
field approximation problem and utilize the training processing of deep learning.

Compared with those CRFs adopted in previous articles [90, 93], we adopt the fully
connected CRFs which consider the long-range correlations between HSI samples. This
property helps GAN-CRF models to better filter noises in the homogeneous areas of some
land cover classes. Compared to just a supervised discriminator, a GAN-CRF model
integrates the advantages of deep learning models and probabilistic graph models and
improves HSI classification accuracy. There are two main reasons for this improvement: 1)
the synthetic HSI samples produced by generators help discriminators to learn more robust
and discriminative features; 2) the subsequent dense CRFs consider the spectral similarity
and spatial closeness of HSI samples to refine the softmax outputs conditional on these
samples using the trained discriminators of GANs.
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5.5 Summary

In this chapter, dense conditional random fields that impose graph constraints are built
on the softmax predictions of trained discriminators to refine HSI classification maps.
The GAN-CRF [97] models incorporate the CRF as a post-processing step and build a
graph upon the learned features and the softmax outputs of discriminators to refine HSI
classification maps. Specifically, the dense CRFs take the classification maps generated
by semi-supervised GANs as an initialization and smooth the noisy classification maps by
adding a pairwise term that imposes the correlation between similar or neighboring pixels
from input HSIs.

There are three differences between the GAN-CRF framework and the original GAN
proposed in [22]. First, GAN-CRF models take the spectral-spatial characteristics of HSI
data into account for both the discriminators and generators. Second, the discriminators
in the semi-supervised framework extend the softmax predictions ŷ of a GAN from two
classes (fake/real) to 1 + ny classes, where ny represents the number of land cover classes.
Third, a post-processing dense CRF has been built on conditional random variables that
are initialized to the softmax outputs of the trained GANs to filter salt and pepper noises
in homogenous areas.
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Chapter 6

Experimental Results

“ Deep learning algorithms seek to exploit the unknown structure in the input distribution
in order to discover good representations, often at multiple levels, with higher-level learned
features defined in terms of lower-level features. The objective is to make these higher level
representations more abstract, with their individual features more invariant to most of the
variations that are typically present in the training distribution, while collectively preserv-
ing as much as possible of the information in the input. Ideally, these representations
are employed to disentangle the unknown factors of variation that underlie the training
distribution. ”

– Yoshua Bengio [2]
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In this chapter, the three HSI datasets, specified the model configuring process, and
evaluated the proposed methods are introduced, along with classification metrics like overall
accuracy (OA), average accuracy (AA), and kappa coefficient (κ). For supervised classifi-
cation experiments, the Indian Pines (IN), Kennedy Space Centre (KSC), and University
of Pavia (UP) datasets are used for assessing the classification performance of the SSRN
framework in the cases of unbalanced training data, a small number of training samples
and high spatial resolution. In all three cases, experiments are ran for 10 times with
randomly selected training data and reported the mean and standard deviation of main
classification metrics. For semi-supervised experiments, two challenging HSI datasets (IN
and UP datasets) are used, hyper-parameters of semi-supervised GANs are selected, and
GAN-CRF models are evaluated. Additionally, training and testing times are recorded of
all semi-supervised GANs to quantitatively assess their computational complexity.

6.1 Hyperspectral Image Datasets

Three widely studied datasets are adopted to evaluate the effective and generality of the
SSRNs. In the following paragraph, each hyperspectral image dataset is introduced con-
secutively.

IN dataset: The IN dataset, gathered by Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) in 1992 from northwest Indiana, includes 16 vegetation classes and has
145× 145 pixels with a resolution of 20 m by pixel. Once the 20 bands corrupted by water
absorption effects have been discarded, the remaining 200 bands are adopted for analysis
and range from 400 nm to 2500 nm.

KSC dataset: The KSC dataset, collected by AVIRIS in Florida in 1996, contains 13
upland and wetland classes and has 512 × 614 pixels with a resolution of 18 m by pixel.
Once the bands with low signal to noise ratio have been removed, the remaining 176 bands
are used for assessment and range from 400 to 2500 nm.

UP dataset:, acquired by Reflective Optics System Imaging Spectrometer (ROSIS-3)
in northern Italy in 2001, contains 9 urban land cover types and has 610× 340 pixels with
a resolution of 1.3 m by pixel. Once the noisy bands have been discarded, the remaining
103 bands are employed for evaluation and ranges from 430 nm to 860 nm.

In the IN and KSC datasets, 20%, 10%, and 70% of the labelled data are randomly
assigned to training, validation, and testing groups, respectively. In the UP datasets, the
ratio is 10%:10%:80%. In addition, all input data of three HSI datasets are standardized
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Table 6.1: Training, Validation and Testing Numbers in IN Dataset

No. Class Train. Val. Test.

1 Alfalfa 10 1 35
2 Corn-notill 286 131 1011
3 Corn-mintill 166 83 581
4 Corn 48 22 167
5 Grass-pasture 97 42 344
6 Grass-tree 146 69 515
7 Grass-pasture-mowed 6 3 19
8 Hay-windrowed 96 55 327
9 Oats 4 4 12
10 Soybean-notill 195 94 683
11 Soybean-mintill 491 264 1700
12 Soybean-clean 119 56 418
13 Wheat 41 26 138
14 Woods 253 136 876
15 Buildings-Grass-Trees 78 34 274
16 Stone-Steel-Towers 19 5 69

TOTAL 2055 1025 7169

to mean value with unit variance. Tables 6.1, 6.2, and 6.3 list the training, validation, and
testing sample numbers of three datasets, respectively.

6.2 Supervised Classification Using SSRNs

After designing the SSRN framework, the training process that updates the parameters of
3D filter banks are configured through back propagating the gradients of the cost function.
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Table 6.2: Training, Validation and Testing Numbers in KSC Dataset

No. Class Train. Val. Test.

1 Scrub 153 78 530
2 Willow swamp 49 29 165
3 CP hammock 52 28 176
4 Slash pine 51 31 170
5 Oak/Broadleaf 33 18 110
6 Hardwood 46 22 161
7 Swap 21 4 80
8 Graminoid marsh 87 45 299
9 Spartina marsh 104 39 377
10 Cattail marsh 81 40 283
11 Salt marsh 84 39 296
12 Mud flats 101 61 341
13 Water 186 87 654

TOTAL 1048 521 3642

Next, four factors that control the training process and classification performance of the
trained SSRN are analyzed. The four factors are the learning rate, the kernel number of
convolutional layers, the regularization method, and the spatial size of the input cuboids.
Due the training sets are small, the batch size is set to 16 and adopted the RMSProp
optimizer [67] to harness the training process. In the training process of each configuration,
the models with the highest classification performance in validation groups were preserved,
and the reported results were generated by these optimal models.

First, learning rates control the learning step for each training iteration. Specifically,
inappropriate learning rate settings will lead to divergence or slow convergence. Therefore,
the grid search is used and each experiment is ran for 200 epochs to find the optimum
learning rate from {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003} for each dataset. Based on
the classification outcomes, the optimum learning rates for IN, KSC, and UP datasets are

44



Table 6.3: Training, Validation and Testing Numbers in UP Dataset

No. Class Train. Val. Test.

1 Asphalt 664 670 5297
2 Meadows 1865 1810 14974
3 Gravel 210 241 1648
4 Trees 307 333 2424
5 Metal Sheets 135 134 1076
6 Bare Soil 503 500 4026
7 Bitumen 133 133 1046
8 Bricks 369 363 2950
9 Shadows 95 97 755

TOTAL 4281 4281 34214

0.0003, 0.0001, and 0.0003, respectively.

Second, the kernel numbers of convolutional filter banks decide the representation ca-
pacity and computational consumption of SSRN. As shown in Figure 3.5, the proposed
network has the same kernel number in each convolutional layer of the spectral and spatial
residual blocks. Different kernel numbers from 8 to 32 in an interval of 8 are assessed in
each convolutional layer to find a general framework. As shown in Figure 6.1, the models
with 24 convolution kernels in each convolutional filter bank achieved the highest classifica-
tion accuracy in IN and UP datasets, and the model with 16 convolution kernels obtained
the best performance in KSC dataset. These results are acquired in 200-epoch training
processes for each setting in three datasets.

Third, given there are more parameters than training samples and deep learning mod-
els tend to overfit training data, batch normalization and a 50% dropout can be used
for regularizing training process. Hence, the models are evaluated without regularization
method, with dropout, with batch normalization (BN), and with both dropout and BN un-
der the same condition for 200-epoch training. As shown in Table 6.4, the BN outperforms
the dropout in term of mean overall classification accuracy. More importantly, the SSRN
performs the best when using both regularization strategies in all three HSI datasets.
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Table 6.4: Overall Accuracy (%) of SSRN with Different Regularizers

SSRN IN KSC UP

None 96.41± 0.51 97.75± 0.54 98.97± 0.17

Dropout 95.83± 0.52 96.37± 0.89 99.02± 0.19

BN 97.73± 0.42 98.96± 0.23 99.42± 0.13

Both 97.76± 0.38 99.02± 0.31 99.59± 0.08

Table 6.5: Overall Accuracy (%) of SSRN with Different Input Sizes

Spatial Size IN KSC UP

3× 3 75.83± 0.14 92.38± 0.99 96.81± 0.24

5× 5 92.83± 0.66 96.99± 0.55 98.72± 0.17

7× 7 97.81± 0.34 99.01± 0.31 99.54± 0.11

9× 9 98.68± 0.29 99.51± 0.25 99.73± 0.15

11× 11 98.70± 0.21 99.57± 0.54 99.79± 0.08

Fourth, to evaluate the influence of the spatialized input, the proposed models are
tested using different spatial sizes for input cuboids. Table 6.5 shows that the proposed
SSRNs perform robustly for different spatial sizes if these sizes are equal to or larger than
7 × 7, because the SSRN learns discriminative spatial features of input data. In all three
datasets, the classification results increase with the spatial size of input cuboids. The
important role of spatial context that this experiment demonstrated is in accordance with
results in other publications [47, 55]. Considering the larger input sizes lead to higher
classification accuracy, the spatial size of input HSI data is fixed to make a fair comparison
between different classification methods.

6.2.1 Classification Results

The SSRN are compared with kernel SVM [70] and state-of-the-art deep learning models,
such as SAE [9] and 3D CNN [8]. To demonstrate the effectiveness of the spectral and
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Table 6.6: Classification Results of Different Methods for IN Dataset

SVM SAE CNN CNNL SPA SPC SSRN

OA(%)
81.67
±0.65

85.47
±0.58

97.41
±0.43

95.78
±0.71

98.01
±0.37

90.68
±0.75

99.19
±0.26

AA(%)
79.84
±3.37

86.34
±1.14

97.39
±0.56

95.67
±1.23

98.15
±0.56

92.00
±2.84

98.93
±0.59

κ×100
78.76
±0.77

83.42
±0.66

97.05
±0.49

95.18
±0.81

97.73
±0.42

89.36
±0.86

99.07
±0.30

1 96.78 81.82 100.0 96.17 98.71 83.15 97.82

2 78.74 82.16 97.27 95.31 97.60 86.81 99.17

3 82.26 77.54 98.00 95.31 98.27 87.34 99.53

4 99.03 68.11 92.81 88.58 96.36 91.32 97.79

5 93.75 94.36 99.25 99.24 98.67 97.54 99.24

6 85.96 94.45 99.52 98.72 99.69 97.88 99.51

7 40.00 94.70 97.58 96.13 97.92 89.33 98.70

8 91.80 94.36 99.00 98.58 99.26 90.85 99.85

9 0 82.56 96.95 96.32 100.0 100.0 98.50

10 86.00 81.28 95.38 94.35 97.48 81.92 98.74

11 70.94 84.47 97.72 96.28 98.16 91.68 99.30

12 74.73 83.77 97.13 93.07 95.84 85.14 98.43

13 99.04 96.42 99.65 98.01 99.59 99.72 100.0

14 94.29 92.27 97.95 96.62 98.34 97.44 99.31

15 85.11 80.63 92.30 90.90 96.67 93.43 99.20

16 96.78 81.82 100.0 96.17 97.89 83.15 97.82

spatial residual blocks in the proposed framework, the networks that only contain the
spectral feature learning part (SPC) and the ones that only contain spatial feature learning
part (SPA) are also tested. Moreover, the longer versions of 3D CNN (denote as CNNL)

47



Table 6.7: Classification Results of Different Methods for KSC Dataset

SVM SAE CNN CNNL SPA SPC SSRN

OA(%)
80.29
±0.58

92.99
±0.82

97.08
±0.47

95.45
±0.45

98.63
±0.38

97.90
±0.49

99.61
±0.22

AA(%)
65.64
±0.86

89.76
±1.25

95.09
±0.70

92.56
±0.99

97.81
±0.64

96.56
±0.69

99.33
±0.57

κ×100
77.98
±0.65

92.18
±0.91

96.74
±0.53

94.93
±0.50

98.47
±0.42

97.66
±0.55

99.56
±0.25

1 92.16 93.04 99.00 98.47 99.40 99.11 99.70

2 86.16 92.04 98.48 95.20 99.18 99.19 99.88

3 42.55 85.59 92.16 87.53 95.39 92.60 99.00

4 67.69 72.12 81.84 73.35 93.45 85.49 98.26

5 0 82.20 85.38 77.21 95.70 89.63 99.03

6 54.71 83.15 90.96 90.26 96.27 95.94 99.43

7 0 76.46 93.21 89.63 95.19 96.38 97.03

8 65.12 94.10 98.21 97.28 98.67 98.09 99.54

9 67.82 94.57 99.04 98.05 99.43 99.53 99.70

10 93.40 98.91 99.85 99.40 99.96 99.96 99.96

11 100.0 98.39 98.89 98.72 99.63 99.86 99.80

12 83.75 96.42 99.43 98.63 99.31 99.51 100.0

13 100.0 99.83 99.79 99.48 99.89 99.97 100.0

generated from the SPA models without skip connections are evaluated to study the effect
of the designed spatial residual architecture on the decreasing-accuracy phenomenon [8].
To make a fair comparison, the input volume size is set to 7×7×b for all methods and tuned
these competitors to their optimal settings. 20%, 20%, and 10% labeled 3D HSI cuboids
are random selected as training groups for IN, KSC, and UP datasets, respectively.

Tables VI to VIII report the OAs, AAs, Kappa coefficients, and the classification ac-
curacies of all classes for HSI classification. In all three cases, the SSRN achieved the
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Table 6.8: Classification Results of Different Methods for UP Dataset

SVM SAE CNN CNNL SPA SPC SSRN

OA(%)
90.58
±0.47

94.25
±0.18

98.85
±0.15

98.64
±0.20

99.25
±0.08

98.88
±0.22

99.79
±0.09

AA(%)
92.99
±0.36

93.34
±0.39

98.40
±0.30

98.13
±0.35

98.99
±0.27

98.40
±0.27

99.66
±0.17

κ×100
87.21
±0.70

92.35
±0.25

98.47
±0.20

98.20
±0.26

99.00
±0.12

98.52
±0.30

99.72
±0.12

1 87.24 94.59 98.98 98.29 99.25 99.01 99.92

2 89.93 96.44 99.45 99.50 99.58 99.81 99.96

3 86.48 84.57 96.04 94.54 98.06 95.46 98.46

4 99.95 97.37 99.58 99.28 99.76 99.54 99.69

5 95.78 99.60 99.39 99.94 99.50 99.84 99.99

6 97.69 93.39 99.70 99.50 99.74 99.18 99.94

7 95.44 88.57 97.18 96.82 97.87 98.15 99.82

8 84.40 85.66 95.73 95.54 97.44 94.65 99.22

9 100.0 99.88 99.56 99.74 99.74 99.99 99.95

highest classification accuracy and lower standard deviation than 3D CNN. For example,
in the KSC dataset, SSRN (99.61%) delivered a roughly 2.5% increase of mean overall
classification accuracy compared to CNN (97.08%). All deep learning methods generated
obviously better outcomes than the kernel SVM. In all three datasets, the classification
results of CNNL were worse than those of CNN. On the other hand, the SPA performed
better than CNN. These outcomes showed the proposed spatial residual structures mitigate
the declining-accuracy phenomenon. Furthermore, the SSRN constantly performed better
than the SPA, because the spectral residual blocks learned spectral representations that
are complementary to spatial features. Although there are few training samples for Oats
and Grass-pasture-mowed classes in the IN dataset, the SSRN classified the testing data
with higher than 98% mean classification accuracy. These results validated the robustness
of the designed models in the face of difficult conditions.
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Figure 6.1: Overall accuracy (%) of SSRNs with different kernel numbers in IN, KSC, and
UP datasets

Figures 6.2 to 6.4 visualize the classification results of the best trained models in three
datasets, along with the false color images of original HSI and their corresponding ground
truth maps. In all three cases, the qualitative comparison between different methods
is in line with the quantitative comparison in Tables VI to VIII. The SPC generated
classification maps with great noise. The SPA generated smoother results but still some
dot noises exist in some classes. For example, the SPA reduced the speckles in the Wheat
class of IN dataset and the Bare Soil class of UP dataset. Compared to other methods,
the SSRN delivered the most accurate and smooth classification maps for all three HSIs,
because the SSRN learned discriminative spectral and spatial features consecutively.

To test the robustness and generalizability of the proposed SSRN towards different
numbers of training samples, 5%, 10%, 15%, and 20% labeled samples were randomly
chosen as training data for IN and KSC datasets, and 4%, 6%, 8%, and 10% for the UP
dataset. In Figure 6.5, The overall accuracies of different classifiers using different numbers
of training data are illustrated. For a small number of training samples, when the SVM
generated inferior overall accuracy, the SSRN still produced high classification accuracy,
it is more obvious that SSRN performs the best than other methods because the SSRN
extract more discriminative features than other methods. For a large number of training
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Figure 6.2: Classification results of best models for the IN dataset. (a) False color image.
(b) Color table of land cover classes. (c) - (i) Classification results of SVM, SAE, CNN,
CNNL, SPA, SPC, and SSRN

samples, the SSRN still generates the best classification outcomes in all three HSI datasets
but the improvements are not that clear, simply because the classification accuracy are
very high (higher than 99% overall accuracy).

To further validate the effectiveness of residual blocks for mitigating the accuracy-
decreasing phenomenon, SSRN models with varying residual blocks were constructed for
classifying 3D HSI data. SSRNs are tested with from 2 to 5 blocks and treated spectral
and spatial residual blocks differently using the same settings as Tables 6.6, 6.7, and 6.8.
In Figure 6.6, the overall classification accuracy differences between the deeper SSRNs
and their shallow-layer counterparts are negligible. Therefore, in contrast to the obvious
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Figure 6.3: Classification results of best models for the KSC dataset. (a) False color image.
(b) Color table of land cover classes. (c) - (i) Classification results of SVM, SAE, CNN,
CNNL, SPA, SPC, and SSRN

accuracy-decreasing effects reported in [9] and [8], the consistent HSI classification perfor-
mance of SSRNs with varying layers demonstrated that the residual connections mitigate
the decreasing-accuracy effects in other deep learning models.

The training and testing times provide a direct measure of computational efficiency
for the SSRN. All experiments were conducted on an MSI GT72S laptop with the GTX
980M graphical processing unit (GPU). Table 6.9 lists the training and testing times of the
SSRN and other deep learning models. As presented in Table 6.9, the training times of the
spectral section part (SPC) are 5 to 10 times longer than its spatial counterpart (SPA),
because the spectral residual blocks preserved abundant features and kept the spatial size
unchanged. In other words, the spectral residual blocks in the SSRN requires a larger
amount of computational power than their spatial counterparts. The SSRN takes 6 to 10
times longer for training than the CNN, which means the SSRN is more computationally

52



Figure 6.4: Classification results of best models for the UP dataset. (a) False color image.
(b) Color table of land cover classes. (c) - (i) Classification results of SVM, SAE, CNN,
CNNL, SPA, SPC, and SSRN
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Figure 6.5: Overall accuracy of different methods with different training data percentages.
(a) IN dataset. (b) KSC dataset. (c) UP dataset.

expensive than the CNN. Fortunately, the adoption of GPU has largely alleviated the extra
computational costs and reduced the training times.
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Table 6.9: Training and Testing Times of Different Models for Three HSI Datasets

IN KSC UP

SAE Train.(m)
Test.(s)

3.5
2.0

2.6
0.8

12.8
7.7

CNN Train.(m)
Test.(s)

11.4
3.1

4.1
1.2

17.0
8.6

SPA Train.(m)
Test.(s)

10.9
3.0

5.4
1.5

26.3
14.5

SPC Train.(m)
Test.(s)

100.5
21.3

28.7
8.9

123.2
65.6

SSRN Train.(m)
Test.(s)

106.0
17.2

41.1
4.4

105.5
34.5

6.2.2 Discussion

The experimental outcomes validate the effectiveness of the SSRN framework. It is worth
noting that different deep learning models usually prefer different hyper parameters, which
poses a challenge for deploying these models. However, the classification performance of
the SSRN with different settings is stable according to experiment results. Compared to
traditional feature engineering based machine learning methods (e.g. kernel SVM), deep
learning models have four advantages: first, automatic feature extraction, second, hierarchi-
cal non-linear transformation, third, objective functions that directly focus on classification
in lieu of two independent steps, and fourth, the ability to utilize computational hardware
(especially GPU) efficiently.

Three major differences exist between SSRNs and other deep learning models (e.g.
SAE and CNN). First, the SSRN adopts residual connections that improve classification
accuracy and make deep learning models much easier to train. Second, the SSRN treats
spectral features and spatial features separately in two consecutive blocks, through which
more discriminative features can be extracted. Third, owning to batch normalization
operation at each convolutional layer, only hundreds of iterations is needed for training the
SSRN instead of hundreds of thousands in [49].

Three main factors influence the HSI classification performance of supervised deep
learning models: first, the number of training samples; second, the spatial size of input
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Figure 6.6: Overall accuracy of Spectral-Spatial Neural Networks with varying layers and
combinations of residual blocks. The ‘x + y′ formation in the horizontal axis denotes a
SSRN with x spectral and y spatial residual blocks.

data; and third, the representative capacity of the designed models. Because the SSRN
obtained very high classification accuracy for relatively few land cover categories, data
augmentation [8] is not employed to further boost the classification performance of the
SSRN despite a small number of training samples. Given a fixed model, the more data
used for training, and the more information these data contain, the higher classification
accuracy deep learning models can generate. Therefore, to make a fair comparison, it is
suggested to test different models under the same number of training samples and the same
size for each input sample.

6.3 Semi-supervised Classification Results

In this section, two challenging HSI datasets are introduced, set hyper-parameters of semi-
supervised GANs, and evaluate GAN-CRF models and their competitors using performance
metrics including the classification accuracy of each land cover class, overall accuracy (OA),
average accuracy (AA), and kappa coefficient (κ). Additionally, training and testing times
of all semi-supervised GANs are recorded to quantitatively assess their computational
complexity.
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6.3.1 Experimental Datasets

Two most challenging and commonly studied HSI datasets – the Indian Pines (IN) and
the University of Pavia (UP) – are used to evaluate the various types of semi-supervised
GANs and GAN-CRF models for hyperspectral image classification. In both datasets,
{100, 150, 200, 250, 300} HSI cuboids are randomly selected with their annotations for train-
ing, and used the remaining cuboids for testing.

As shown in Figure 6.11 (a) - (b), the IN dataset contains 16 vegetation classes and
has 145 × 145 pixels with a spatial resolution of 20 m by pixel. 200 hyperspectral bands
are used for this study and they range from 400 nm to 2500 nm. As illustrated in Figure
6.13 (a) - (b), the UP dataset includes 9 urban land cover types and has 610× 340 pixels
with a spatial resolution of 1.3 m by pixel. 103 hyperspectral bands are used for this
research and they range from 430 nm to 860 nm. The numbers of labeled HSI samples
for each land cover class for the IN and UP datasets can be found in Figures 6.11 and
6.13, respectively. Given their relatively small numbers, the labeled hyperspectral groups
X1 used for training contain at least two samples for each land cover class to avoid the
situation that no sampled HSI cuboids are sampled for rare classes, especially in the IN
dataset.

6.3.2 Semi-supervised GAN Setting

Figure 4.4 takes the UP dataset as an example to show the discriminator and generator of
a semi-supervised GAN for HSI classification. In this semi-supervised GAN, the generator
takes a 1 × 1 × 200 vector of Gaussian noise as the input and outputs a 9 × 9 × 103 fake
HSI cuboid aiming to make the discriminator classify it as real data. Concurrently, a
real 9 × 9 × 103 HSI cuboids is randomly sampled from a raw HSI as the input of the
discriminator. In this study, according to the result of a grid search, the learning rate
is set to 0.0007, batch size to 50, and the spatial size of sampled HSI cuboids to 9 × 9.
Additionally, the Adam optimizer [34] is adopted to alternatingly train the discriminator
and generator. After the hyper-parameters of semi-supervised GANs are configured, three
factors that influence the classification performance of semi-supervised GANs are analyzed.

First, the kernel number of convolutional and transposed convolutional layers affects
the feature extraction and representation capacity of semi-supervised GANs. As illustrated
in Figure 4.4, the discriminator and generator of a semi-supervised GAN have the same
kernel number in its convolutional and transposed convolutional layers. Different kernel
numbers from 16 to 32 in an interval of 4 are tested for all convolutional or transposed
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convolutional layers of semi-supervised GANs. As shown in Figure 6.7, the semi-supervised
GANs with 24 convolution kernels in each layer achieved the highest classification accuracy
using the IN dataset, and their counterparts with 28 convolution kernels obtained the best
classification performance using the UP dataset. These results are acquired in the 3000-
epoch training for both datasets using randomly sampled 300 HSI cuboids.

Second, the depth of the spectral-spatial discriminators in semi-supervised GANs also
impacts their classification performance. Therefore, semi-supervised GANs with from 4 to
8 layers are assessed, which includes spectral and spatial convolutional layers, with the same
hyper-parameter setting for each dataset. To make a fair comparison, the generators of
semi-supervised GANs are kept to have the same architecture as the generator in Figure 4.4.
As demonstrated in Figure 6.8, the semi-supervised GANs with 3 spectral and 3 spatial
convolutional layers obtained the highest overall accuracies in both datasets. The fact
that classification performance of semi-supervised GANs decreases with more convolutional
layers than the optimal ’3+ 3’ architecture shows discriminators with deeper layers overfit
the small number of labeled real HSI samples.

Third, to evaluate the influence of unlabeled real HSI cuboids, three types of semi-
supervised GANs are tested using different numbers of unlabeled HSI samples for the IN
and UP datasets. The three semi-supervised GANs are the spectral GAN (SPC-GAN), and
the spatial GAN (SPA-GAN), and the spectral-spatial GAN (SS-GAN). As shown in Figure
4.4, the SS-GAN has both spectral and spatial learning blocks in its discriminator, and the
SPC-GAN and SPA-GAN contain only spectral and spatial blocks, respectively. Again, the
same setting of generators are used for all semi-supervised GANs as the generator in Figure
4.4. Table 6.10 shows that adding real unlabeled HSI samples for training contributes
little to and adding more unlabeled samples even jeopardizes the semi-supervised HSI
classification accuracy, which is caused by the different data distribution between labeled
and unlabeled HSI samples.

6.3.3 Comparison Results

The proposed semi-supervised GANs are compared to state-of-the-art GAN-based models,
such as 1D-GAN [84] , AE-GAN [9], and CNN-GAN [103]. To demonstrate the effectiveness
of the spectral-spatial architecture, spectral-spatial GANs (SS-GANs) that comprise three
spectral and three spatial convolutional layers are also compared with their variants: SPC-
GANs (three spectral layers) and SPA-GANs (three spatial layers). As shown in Figure
4.1, the HSI classification results of the spectral-spatial convolutional neural networks
(SS-CNNs) are recorded as important baselines. The generators of all GANs are kept
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Figure 6.7: Overall accuracies of semi-supervised GANs with different kernel numbers in
their convolutiolnal and transposed convolutional layers using 300 labeled HSI samples for
training.

Table 6.10: Overall Accuracies (%) of semi-supervised GANs Using Different Numbers of
Unlabeled and 200 Labeled HSI Samples in the IN and UP Datasets

Datasets Models 0 1000 5000

IN
SPC-GAN
SPA-GAN
SS-GAN

63.21
73.48
81.12

62.12
71.28
82.0

58.96
67.62
78.0

UP
SPC-GAN
SPA-GAN
SS-GAN

84.24
91.01
96.96

84.69
91.74
95.76

79.17
87.35
93.90

the same, which consist of three spectral and four spatial transposed convolutions layers,
each of which has 28 convolution kernels. Then, 3000 epochs for all GAN-based models
are trained, and the input HSI cuboids is set with the same spatial size of 9 × 9× for
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Figure 6.8: Overall accuracies of semi-supervised GANs that contain varying depths of
spectral and spatial convolutional layers in their discriminators using 300 labeled HSI
samples for training . The x + y formation in the horizontal axis denotes a discriminator
with x spectral and y spatial convolutional layers.

all methods that use spatial convolutional layers, and the competitors are tuned to their
optimal settings.

Tables 6.11 and 6.12 report the classification performance, including accuracy of all
land cover classes, OAs, AAs, and Kappa coefficients, of the IN and UP datasets, re-
spectively. In most cases, the proposed semi-supervised GANs perform better than the
state-of-the-art GAN-based models. Interestingly, the supervised benchmark SS-CNNs
perform slightly better than SPA-GANs, which shows the discriminative feature learning
capacity of spectral and spatial convolutional layers. More importantly, the SS-GANs
achieved the highest overall classification accuracies (90.28% and 97.61% OAs for the IN
and UP datasets, respectively) among all GAN-based models and the SS-CNNs. It is
worth noting that he semi-supervised SS-GANs outperform fully supervised SS-CNNs in
IN and UP datasets with 9.21% and 2.57%, respectively, which shows that the generated
samples are helpful for improving classification accuracy. These results demonstrate the
effectiveness of spectral-spatial convolutional architectures and semi-supervised adversar-
ial training. Additionally, Tables 6.11 and 6.12 also show the training and testing times
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Table 6.11: Classification Results, Training, and Testing Times of Different Deep
Learning Models Using 300 HSI Samples for the IN Dataset

Class Samples 1D-
GAN

AE-
GAN

CNN-
GAN

SS-
CNN

SPC-
GAN

SPA-
GAN

SS-
GAN

1 3 50.00 0 46.94 83.33 66.67 100.0 96.43

2 41 51.98 51.20 46.45 77.88 52.71 64.48 87.29

3 29 52.41 38.75 43.17 81.48 48.55 61.49 77.84

4 7 35.38 22.37 47.66 76.47 56.45 81.56 92.35

5 14 68.83 49.74 47.67 78.81 69.44 82.96 92.64

6 20 87.30 81.09 63.37 87.14 86.40 93.98 95.05

7 2 45.83 0 20.75 42.85 67.86 82.35 76.47

8 15 86.86 87.84 79.13 89.45 91.72 90.75 98.70

9 3 33.33 0 34.62 100.0 42.86 45.45 57.89

10 36 39.29 51.15 61.37 77.94 59.30 78.83 90.11

11 64 54.20 64.83 67.49 80.97 72.96 81.60 95.19

12 22 45.57 33.00 34.20 62.52 42.82 53.68 85.74

13 4 63.75 81.31 69.41 97.50 93.71 87.32 93.30

14 28 80.36 74.63 77.32 88.63 79.80 82.32 92.59

15 10 39.24 47.91 64.09 76.92 66.76 70.72 78.74

16 2 98.63 0 84.29 100.0 77.78 94.44 95.29

OA (%) 59.44 60.26 60.68 81.07 67.92 76.65 90.28

AA (%) 58.31 42.74 55.93 81.37 67.23 78.23 87.85

κ× 100 52.06 54.24 55.03 78.21 63.25 73.30 88.92

Training (s) 153.85 217.70 64.87 139.55 932.23 233.32 803.23

Testing (s) 0.59 0.60 0.35 4.117 5.88 1.28 5.09
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Table 6.12: Classification Results, Training, and Testing Times of Different Deep
Learning Models Using 300 HSI Samples for the UP Dataset

Class Samples 1D-
GAN

AE-
GAN

CNN-
GAN

SS-
CNN

SPC-
GAN

SPA-
GAN

SS-
GAN

1 47 84.74 62.51 73.38 96.07 84.74 91.10 95.62

2 132 92.50 92.02 90.17 97.57 87.31 96.93 99.49

3 15 75.75 39.25 58.09 72.82 60.77 78.84 89.02

4 20 93.46 84.55 98.39 99.37 97.07 98.94 98.65

5 11 99.55 94.72 99.41 98.97 95.06 99.55 100.0

6 35 86.77 62.72 74.21 98.18 86.70 92.71 99.09

7 13 82.43 40.46 89.29 96.38 85.86 95.76 97.10

8 21 73.79 51.78 83.65 82.81 75.85 86.88 92.54

9 6 98.13 66.14 99.30 99.36 96.56 99.79 100.0

OA (%) 88.36 75.10 84.23 95.04 85.78 93.97 97.61

AA (%) 87.46 66.02 85.10 93.50 85.55 93.39 96.84

κ× 100 84.41 67.07 78.79 93.40 80.69 91.98 96.82

Training (s) 107.27 145.11 64.71 93.45 647.68 159.37 527.46

Testing (s) 2.06 1.34 1.76 14.30 18.38 4.03 15.36

of all models, which indicate the computational costs of these models. All experiments
were conducted using an NVIDIA TITAN Xp graphical processing unit (GPU). In both
datasets, the SPC-GANs are the slowest to train and the SS-GANs take about 6 times
longer for training than SS-CNNs.

To test the robustness of the SS-GANs and their competitors, different numbers of
labeled HSI cuboids in an interval of 50 from 100 to 300 are randomly sampled to train
these semi-supervised GANs and SS-CNNs for the IN and UP datasets. As shown in Figure
6.9, the classification performance of SPA-GANs is comparable to that of SS-CNNs. AE-
GANs perform clearly worse than other models because their fully connected layers fail to
take the spectral-spatial characteristics of HSI samples into account. More importantly,
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Figure 6.9: Overall accuracies of different semi-supervised GANs and the supervised bench-
mark SS-CNNs using from 100 to 300 HSI samples for training. (a) IN dataset. (b) UP
dataset.

the proposed SS-GANs consistently outperform their semi-supervised competitors and SS-
CNNs in both datasets. These results demonstrate the importance of accounting for the
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Table 6.13: Overall Accuracies (%) of baseline classification results (base.) and different
post-processing methods for the IN and UP datasets

Base. Mean Max Gauss. Laplace CRF

IN 86.99 96.05 94.53 95.09 94.29 95.16

UP 96.41 96.65 96.47 96.74 96.84 98.27

attributes of training data to design deep learning models, which is in line with the report
of [99].

To evaluate the post-processing dense CRFs, semi-supervised GANs without CRFs (w/o
CRF) are compared with their counterparts with CRFs (w/ CRF). Standard deviations
in Equation (5.8) are set as θα = 2 and θβ = 1 in both datasets, and set constants in
Equation (5.8) c = 8 and c = 10 for the IN and UP datasets, respectively. Also, the
dense CRFs are compared to other alternative post-processing methods, including mean
filter, maximum filter, Gaussian filter, and Laplace method. Table 6.13 shows that the
CRF delivers comparable overall accuracy improvement for post-processing to the best
performed mean filter using the IN dataset, and outperform all other methods using the
UP dataset. This is caused by the homogeneous spatial layout of the former dataset and
more heterogeneous distribution of the latter dataset. Therefore, the long-range correlation
emphasized by CRFs facilitates the classification of HSI samples from heterogeneous areas.

In this study, the three most prominent principal component analysis (PCA) channels
of HSI X, which affect only the pairwise term of CRFs, are used instead of raw HSI
cuboids to facilitate the mean field approximation. Although As shown in Table 6.14,
SS-GANs and SS-GAN-CRF models perform better than their competitors, and GAN-
CRF models significantly enhance the classification performance of those models without
integrating dense CRFs, Moreover, Figures 6.11 and 6.13 show the classification maps
of all semi-supervised GANs and all GAN-CRF models. The qualitative results of these
classification maps are in line with the quantitative report of Table 6.14. The SS-GAN-
CRF models deliver the most accurate overall classification accuracies(96.30% and 99.31%
OAs for the IN and UP datasets, respectively) and smoothest classification maps for both
HSI datasets, because the SS-GANs learn the most discriminative spectral-spatial features
and dense CRFs consider long-range correlations between similar HSI samples. Therefore,
these classification outcomes validate the feasibility of integrating semi-supervised deep
learning and graph models given limited labeled HSI samples for training.
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Table 6.14: Overall Accuracies (%) of deep learning models and their refined results by
adding dense CRFs using 300 labeled HSI samples for training

IN Dataset UP Dataset

Models w/o CRF w/ CRF w/o CRF w/ CRF

1D-GAN 59.44 70.41 88.36 94.41

AE-GAN 60.26 76.08 75.10 90.44

CNN-GAN 60.28 73.83 84.23 90.42

SS-CNN 81.07 87.66 95.04 98.05

SPC-GAN 68.92 74.64 85.78 88.13

SPA-GAN 76.65 85.64 93.97 97.57

SS-GAN 90.28 96.30 97.61 99.31

6.3.4 Discussion

The GAN-CRF models incorporate the CRF as a post-processing step and build a graph
upon the learned features and the softmax outputs of discriminators to refine HSI classi-
fication maps. Compared with those CRFs adopted in previous articles [90, 93], the fully
connected CRFs consider the long-range correlations between HSI samples. This property
helps GAN-CRF models to better filter noises in the homogeneous areas of some land
cover classes. Compared to just a supervised discriminator, a GAN-CRF model integrates
the advantages of deep learning models and probabilistic graph models and improves HSI
classification accuracy. There are two main reasons for this improvement: 1) the synthetic
HSI samples produced by generators help discriminators to learn more robust and discrim-
inative features; 2) the subsequent dense CRFs consider the spectral similarity and spatial
closeness of HSI samples to refine the softmax outputs conditional on these samples using
the trained discriminators of GANs.

Four major insights are gained from the semi-supervised HSI classification outcomes
of GANs and GAN-CRF models in both datasets. First, by taking the characteristics
of training data into account, the discriminators of SS-GANs extract discriminative HSI
features and achieve better classification accuracy. Second, generators of SS-GANs learn
feature representation by producing synthetic HSI samples, and in turn make discrimina-
tors more robust to adversaries and learn more discriminative features. Therefore, this
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Figure 6.10: Classification results of semi-supervised GAN models, a supervised CNN, and
their refined counterparts by adding dense CRFs using 300 labeled HSI samples for the IN
dataset. (a) False color image. (b) Ground truth labels. (c) - (i) Classification maps of
1D-GAN, AE-GAN, CNN-GAN, SS-CNN, SPC-GAN, SPC-GAN, and SS-GAN.

adversarial training enables semi-supervised GANs to deliver superior classification out-
comes to supervised deep learning models. Third, adding unlabeled real HSI samples to
train semi-supervised GANs marginally improves or even jeopardizes the HSI classification
results. Fourth, dense CRFs take the classification maps generated by semi-supervised
GANs as an initialization and smooth the noisy classification maps by adding a pairwise
term that imposes the correlation between similar or neighboring pixels from input HSIs.
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Figure 6.11: Classification results of semi-supervised GAN models and a supervised CNN
that adopt dense CRFs for post-processing using 300 labeled HSI samples for the IN dataset.
(a) False color image. (b) Ground truth labels. (c) - (i) Classification maps of 1D-GAN-
CRF, AE-GAN-CRF, CNN-GAN-CRF, SS-CNN-CRF, SPC-GAN-CRF, SPA-GAN-CRF,
and SS-GAN-CRF.
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Figure 6.12: Classification results of semi-supervised GAN models, a supervised CNN, and
their refined counterparts by adding dense CRFs using 300 labeled HSI samples for the UP
dataset. (a) False color image. (b) Ground truth labels. (c) - (i) Classification maps of
1D-GAN, AE-GAN, CNN-GAN, SS-CNN, SPC-GAN, SPC-GAN, and SS-GAN.
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Figure 6.13: Classification results of models that adopt dense CRFs as a post-processing
step using 300 labeled HSI samples for the UP dataset. (a) False color image. (b) Ground
truth labels. (c) - (i) Classification maps of 1D-GAN-CRF, AE-GAN-CRF, CNN-GAN-
CRF, SS-CNN-CRF, SPC-GAN-CRF, SPA-GAN-CRF, and SS-GAN-CRF.
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Chapter 7

Conclusions

“ Just as the industrial revolution relieved humanity of a lot of physical drudgery (what
would your life be like if you had to sew your own clothes?), in the future AI will relieve
humanity of mental drudgery. For example, having autonomous cars means we will no
longer have to waste 3 years of our lives driving. This will give us more time to spend with
loved ones and to pursue more worthy goals! ”

– Andrew Ng
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In this thesis, a supervised deep learning model SSRN and a semi-supervised model
GAN-CRF have been proposed for hyperspectral image classification. The SSRN is com-
posed of consecutive spectral and spatial feature learning blocks, and the GAN-CRF con-
tains a spectral-spatial GAN and a post-processing CRF. Both models account for the
characteristics of HSIs and achieve top-ranking performance compared to state-of-the-art
deep learning models. In the following sections, the contributions of these two deep learning
models are summarized separately.

7.1 Summary of Supervised Model

The essence of deep learning models is learning the representation of input data automati-
cally without feature engineering, because the models themselves can extract discriminative
features given appropriate architectural designs and training process settings. Moreover,
these hyper parameter settings depend on the number of training samples and the spa-
tial size of each sample. In the cases of HSI classification, one prominent challenge is
the shortage of annotations. Thus, this thesis counters this obstacle with the proposed
spectral-spatial residual architecture that takes both abundant spectral signatures and
spatial contexts into account.

It is suggested that the deep learning methods need a significant amount of labeled
data for training [48]. However, the experimental results have demonstrated that the
proposed models, which have a spectral-spatial residual architecture and an appropriate
regularization strategy, perform vigorously with large numbers as well as limited numbers
of training samples. Also, according to the sensitivity test results, the proposed network
can extract more discriminative spatial features with larger input cuboids, and simply
expanding the sizes of input data will increase the classification accuracy. In other words,
HSI classification models using training samples with more spatial information tend to have
an advantage over the ones using training data with less spatial information. Therefore, it
is advocated that the spatial size of input HSI data should be the same when comparing
different classification methods. Considering the consistent performance in three widely
studied HSI cases, the SSRN likely can outperform other machine learning competitors for
HSI classification under same comparison standards in other cases.
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7.2 Summary of Semi-supervised Model

In contrast to the supervised learning model, a semi-supervised GAN-CRF framework
is proposed to address three commonly occurring challenges for HSI classification: the
high spectral dimensionality of training data, the small numbers of labeled samples, and
the noisy classification maps generated by deep learning models. First, four consecu-
tively structured convolutional and transposed convolutional layers are designed to take
the spectral-spatial characteristics of HSIs into consideration. Second, semi-supervised
GANs, each of which comprises a generator and a discriminator, are established to extract
discriminative features and to learn feature representation of HSI samples. Third, a proba-
bilistic graphical model is integrated with a semi-supervised deep learning model to refine
HSI classification maps. The experimental results using two of the most widely studied and
challenging HSI datasets demonstrate that the spectral-spatial GANs (SS-GANs) perform
the best among all semi-supervised GAN-based models and supervised benchmark models,
and subsequently that the spectral-spatial GAN-CRF (SS-GAN-CRF) models achieved
state-of-the-art performance for semi-supervised HSI classification.

The GAN-CRF models demonstrate an effective way to integrate two mainstream pixel-
wise HSI classification methods — deep learning and probabilistic graphical models — and
this framework can be easily generalized to other image interpretation cases. These two
models have complementary advantages in the sense that deep learning models focus on
discriminative feature extraction and implicit feature representation, and graph models
emphasize the smoothness prior of images that is crucial for accurate classification and
segmentation. However, the GAN-CRF framework presents a two-step setting because the
dense CRFs function as a post-processing step to refine the classification maps generated
by GANs.

7.3 Thesis Contribution Highlights

Discrimiantive and generative models have complementary advantages in the sense that
deep learning models focus on hierarchical feature extraction and implicit feature repre-
sentation, and graph models emphasize the smoothness prior that is crucial for accurate
classification and segmentation of remote sensing images. The contributions of supervised
models are fourfold.

• The designed SSRN, which contains consecutive spectral and spatial residual blocks,
has alleviated the decreasing-accuracy phenomenon.

72



• The experimental results demonstrated that the SSRN performs consistently with
the highest classification accuracy for all three types of HSI datasets with different
challenges. It is worth noting that this network has delivered robust classification
performance using small as well as large numbers of uneven training samples.

• Batch normalization, which is a simple and effective strategy to increase the math-
ematical stabilization of feature maps, are used for after each convolutional layer to
regularize the training process and improved classification accuracy.

• The SSRN achieved state-of-the-art results with limited labeled 3D cuboids as train-
ing data in three cases and can easily be generalized to other remote sensing scenarios,
because of their uniform structural design and deep feature learning capacity.

For semi-supervised models, four specific convolutional or transposed convolutional
layers are designed for semi-supervised HSI classification, and spectral-spatial GANs are
proposed that consists of these learning blocks. The main contributions of semi-supervised
GAN-CRF models are as follows:

• The spectral-spatial attributes of HSIs are integrated into convolutional and trans-
posed convolutional layers of a semi-supervised GAN to learn discriminative spectral-
spatial features of HSI samples.

• Semi-supervised GANs are constructed to alleviate the shortage of labeled data
through adversarial training, which is a zero-sum game between the discriminators
and generators of GANs.

• The GAN-CRF framework demonstrates an effective way to integrate two main-
stream machine leanring methods – deep learning and probabilistic graphical models
– and this framework can be generalized to other image interpretation cases.

• The dense CRFs function as a post-processing step to refine the classification maps
generated by GANs. In this case, the GAN and CRF are two independent components
and this framework is a two-step framework.

7.4 Future Research

The SSRN and GAN-CRF models have established a solid foundation for supervised or
semi-supervised feature learning in the context of hyperspectral image analysis, and deliv-
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Figure 7.1: Residual blocks with and without attention mechanism, which is effective to
boost discriminative feature learning and image recognition performance by re-calibrating
channels. (a) A normal residual block. (b) A squeeze-and-excitation residual block.

ered promising classification results. Several future research directions could be built on
top of these models or ideas presented in this thesis.

1. Attention mechanism: Attention mechanism has been proven effective for neural
language processing and image recognition tasks [20,68]. For example, a squeeze-and-
excitation (SE) module adopts the attention mechanism on image-level categorical
information and improves the representational power of residual networks for large-
scale classification via re-calibrating channel-wise weights [25]. As illustrated in Fig-
ure 7.1, this representational boost is achieved by squeezing out spatial information
to generate channel-wise scaling weights. Several recent works also employ the atten-
tion mechanism to improve remotely sensed image recognition performance [26,52,72].
Since spectral(channel-wise) information is abundant for HSI, it is worth investigat-
ing a simple and effective way to utilize spatial or spectral (channel-wise) attention
for achieving better supervised HSI classification performance.

2. Domain adaptation: Domain adaptation has been adopted extensively in state-
of-the-art artificial intelligence models [13, 61, 63, 79]. The semi-supervised learning
is a special case of domain adaptation where the deep learning models learn from
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labelled samples during training. In general, neural network layers trained in one
dataset embed prior knowledge to enable training new models that have more ex-
pressive capacity than those trained from scratch in different datasets. Considering
the fact that only a small amount of remotely sensed data is labelled, transferring ex-
isting knowledge learned from these labelled samples from one dataset to much larger
amounts of unlabelled samples from other datasets presents a valuable research di-
rection.

3. Segmentation methods: In this thesis, HSI analysis is defined as a pixel-wise clas-
sification problem. However, the HSI samples (input) and classification map pixels
(output) correspond spatially to each other. This spatial correspondence connects to
an important branch in computer vision: semantic segmentation. The wide adoption
of neural networks for classification is also witnessed in the semantic segmentation
community [1, 7]. Pixel-wise classification was regarded as the same problem as
semantic segmentation, but differences exist. Therefore, the key problem in this
research direction rests on how to utilize the difference between classification and
segmentation, as well as the data-specific characteristics.

4. Transductive learning: The semi-supervised GAN is an inductive learning frame-
work, in which testing data is not accessible during network training. In contrast,
transductive learning, in which testing data is accessible during training, could be
helpful in real world applications [78]. The transductive learning strategy draws in-
tuition directly from testing data and thus requires fewer labelled annotations. The
challenge of transductive learning lies in the different distribution between training
and accessible testing samples, resulting in classification performance dependent on
testing data. This distribution difference makes transductive learning hard to general-
ize to unseen cases. Hence, how to improve the generalizability of the semi-supervised
GAN models in a transductive manner is a topic worth exploring.

5. Graph Neural Networks: Recent works [29,56] suggest that neural networks could
recognize patterns from complex and sparse graphs, including brain functional maps,
social media networks, and scholar citation networks. Also, conditional random fields
impose graph constraints on deep learning models in the proposed GAN-CRF model.
Because images are grid-like graphs, deep neural networks that take graphs as input
can also be used for HSI classification [56]. Specifically, the graph neural networks
(GNNs) account for not only the spatial closeness but also the spectral similarity.
Therefore, designing GNNs focus on learning graph features in the context of remotely
sensed data remains a challenging and open question [3, 12].
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Figure 7.2: An end-to-end trainable semi-supervised GAN-CRF framework for HSI classi-
fication. This framework adopts two losses: The GAN loss term remains the same as used
in training semi-supervised GANs, and the CRF loss term is the cross entropy between the
pixel-wise output predictions of CRF layers and the HSI ground-truth targets.

6. Integrated Frameworks: The GAN-CRF model validates the feasibility to inte-
grate GAN and CRF by demonstrating a way to achieve this target [97]. Specifically,
a GAN is trained in a semi-supervised way and then the trained discriminator of
the GAN is used to produce pixel-wise conditional probability maps. Then, a CRF
considers the pixel-wise classification prediction holistically and adds structural con-
straints upon the discriminator outputs. However, the semi-supervised GAN and
the dense CRF are trained separately, because different optimizers are needed for
them. Therefore, future research should involve a joint training framework with a
redesigned architecture. For example, the discriminator could be a local semantic
segmentation network and the generator should be changed accordingly.

To obtain a unified GAN-CRF model, novel CRF layers should be designed to approx-
imate CRFs. The implementation keystone rests on the information, which includes
the forward inferences and backward gradients, propagated between the discrimi-
nator of a GAN and the CRF layers. As shown in Figure 7.2, an integral model
containing two loss terms is proposed. The GAN loss term remains the same as
used in training semi-supervised GANs, and the CRF loss term is the cross entropy
between the pixel-wise output predictions of CRF layers and the HSI ground-truth
targets. Given that the message passing representation of CRFs can be implemented
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via arithmetic operations and convolution layers, this research line will be further
explored for imposing graph constraints on deep learning models to construct an
end-to-end trainable model.
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