8 research outputs found

    Молекулярні антени на основі силікатів кальцію для біотехніки

    Get PDF
    Роботу викладено на 93 сторінках, вона містить 5 розділів, 25 ілюстрацій, 26 таблиць і 70 джерел в переліку посилань. Об’єктом дослідження є пластини кремнія n-типу провідності для виготовлення композитної біосумісної структури. Предметом дослідження є силікат кальцію на підкладинці кремнію для створення молекулярних антен. Метою роботи є створення сенсорів біологічних речовин на основі кремнієвого польового транзистора (BioFET). Отримана композитна структура Si/SiO2/(CaO-SiO2), яка демонструє властивість біосумісності, що підтверджено утворенням гідроксиапатиту на поверхні Si після зберігання в розчині, що імітує плазму крові людини. У першому інформаційно-аналітичному розділі роботи визначено необхідність вивчення та удосконалення комунікації і взаємодії на базі обмінюваної інформації елементів Інтернету біо- наноречей. У другому інформаційно- аналітичному розділі роботи наведено сучасний стан розвитку біотехнології та зокрема біопольових транзисторів. У третьому розділі наведена теоретична модель роботи молекулярної антени на основі біопольового транзистора. У четвертому розділі вивчається композитна структура Si/SiO2/(CaOSiO2) на поверхні кремнію, яка була синтезована методом сонохімічного синтезу та подальшим утворенням гідроксиапатиту при вимочуванні зразка в рідині, що симулює плазму людської крові. У п'ятому розділі представлений розроблений стартап-проект на основі досліджень по виконаній роботі.The work was found on 93 pages, it contained 5 sections, 25 images, 26 persons and 70 sources in translation. The object of the study is n-type silicon wafers for the manufacture of composite biocompatible structures. The subject of the study is calcium silicate on a silicon substrate to create molecular antennas. The method of operation creates a sensitive biological potential on a large silicon transistor (BioFET). The obtained Si/SiO2/(CaO-SiO2) composite structure demonstrates the power of biological ability, which confirms the formation of hydroxyapatite at the level of Si after being preserved in the section requiring human creep. In the first information and analytical section of the work, the reliability and improvement of communications were achieved, and we see information from the Internet of bio-things on the basis of exchange data. In another information and analytical section are the current state of development of biotechnology and such biofield transistors. The third section deals with the analytical model of the operation of a molecular antenna on a biological transistor. The fourth section examines the composite structure of Si/SiO2/(CaOSiO2) on the silicon surface, which was synthesized by sonochemical synthesis and the subsequent formation of hydroxyapatite when soaking the sample in a fluid simulating human blood plasma. The fifth section presents a developed startup project based on research on the work done

    Universal Transceivers: Opportunities and Future Directions for the Internet of Everything (IoE)

    Get PDF
    The Internet of Everything (IoE) is a recently introduced information and communication technology (ICT) framework promising for extending the human connectivity to the entire universe, which itself can be regarded as a natural IoE, an interconnected network of everything we perceive. The countless number of opportunities that can be enabled by IoE through a blend of heterogeneous ICT technologies across different scales and environments and a seamless interface with the natural IoE impose several fundamental challenges, such as interoperability, ubiquitous connectivity, energy efficiency, and miniaturization. The key to address these challenges is to advance our communication technology to match the multi-scale, multi-modal, and dynamic features of the natural IoE. To this end, we introduce a new communication device concept, namely the universal IoE transceiver, that encompasses transceiver architectures that are characterized by multi-modality in communication (with modalities such as molecular, RF/THz, optical and acoustic) and in energy harvesting (with modalities such as mechanical, solar, biochemical), modularity, tunability, and scalability. Focusing on these fundamental traits, we provide an overview of the opportunities that can be opened up by micro/nanoscale universal transceiver architectures towards realizing the IoE applications. We also discuss the most pressing challenges in implementing such transceivers and briefly review the open research directions. Our discussion is particularly focused on the opportunities and challenges pertaining to the IoE physical layer, which can enable the efficient and effective design of higher-level techniques. We believe that such universal transceivers can pave the way for seamless connection and communication with the universe at a deeper level and pioneer the construction of the forthcoming IoE landscape

    Modeling and Analysis of SiNW BioFET as molecular antenna for Bio-cyber interfaces towards the Internet of Bio-NanoThings

    No full text
    Seamless connection of molecular nanonetworks to macroscale cyber networks is envisioned to enable the Internet of Bio-NanoThings, which promises for cutting-edge applications, especially in the medical domain. The connection requires the development of an interface between the biochemical domain of molecular nanonetworks and the electrical domain of conventional electromagnetic networks. To this aim, in this paper, we propose to exploit field effect transistor based biosensors (bioFETs) to devise a molecular antenna capable of transducing molecular messages into electrical signals. In particular, focusing on the use of SiNW FET-based biosensors as molecular antennas, we develop deterministic and noise models for the antenna operation to provide a theoretical framework for the optimization of the device from communication perspective. We numerically evaluate the performance of the antenna in terms of the Signal-to-Noise Ratio (SNR) at the electrical output

    Modeling and Analysis of SiNW BioFET as molecular antenna for Bio-cyber interfaces towards the Internet of Bio-NanoThings

    No full text
    corecore