1,603 research outputs found

    Scalable and Sustainable Deep Learning via Randomized Hashing

    Full text link
    Current deep learning architectures are growing larger in order to learn from complex datasets. These architectures require giant matrix multiplication operations to train millions of parameters. Conversely, there is another growing trend to bring deep learning to low-power, embedded devices. The matrix operations, associated with both training and testing of deep networks, are very expensive from a computational and energy standpoint. We present a novel hashing based technique to drastically reduce the amount of computation needed to train and test deep networks. Our approach combines recent ideas from adaptive dropouts and randomized hashing for maximum inner product search to select the nodes with the highest activation efficiently. Our new algorithm for deep learning reduces the overall computational cost of forward and back-propagation by operating on significantly fewer (sparse) nodes. As a consequence, our algorithm uses only 5% of the total multiplications, while keeping on average within 1% of the accuracy of the original model. A unique property of the proposed hashing based back-propagation is that the updates are always sparse. Due to the sparse gradient updates, our algorithm is ideally suited for asynchronous and parallel training leading to near linear speedup with increasing number of cores. We demonstrate the scalability and sustainability (energy efficiency) of our proposed algorithm via rigorous experimental evaluations on several real datasets

    Synthesis of neural networks for spatio-temporal spike pattern recognition and processing

    Get PDF
    The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify, arbitrarily, neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times.Comment: In submission to Frontiers in Neuromorphic Engineerin

    Six networks on a universal neuromorphic computing substrate

    Get PDF
    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality

    A Neural Model for Self Organizing Feature Detectors and Classifiers in a Network Hierarchy

    Full text link
    Many models of early cortical processing have shown how local learning rules can produce efficient, sparse-distributed codes in which nodes have responses that are statistically independent and low probability. However, it is not known how to develop a useful hierarchical representation, containing sparse-distributed codes at each level of the hierarchy, that incorporates predictive feedback from the environment. We take a step in that direction by proposing a biologically plausible neural network model that develops receptive fields, and learns to make class predictions, with or without the help of environmental feedback. The model is a new type of predictive adaptive resonance theory network called Receptive Field ARTMAP, or RAM. RAM self organizes internal category nodes that are tuned to activity distributions in topographic input maps. Each receptive field is composed of multiple weight fields that are adapted via local, on-line learning, to form smooth receptive ftelds that reflect; the statistics of the activity distributions in the input maps. When RAM generates incorrect predictions, its vigilance is raised, amplifying subtractive inhibition and sharpening receptive fields until the error is corrected. Evaluation on several classification benchmarks shows that RAM outperforms a related (but neurally implausible) model called Gaussian ARTMAP, as well as several standard neural network and statistical classifters. A topographic version of RAM is proposed, which is capable of self organizing hierarchical representations. Topographic RAM is a model for receptive field development at any level of the cortical hierarchy, and provides explanations for a variety of perceptual learning data.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409

    A Cortical Sparse Distributed Coding Model Linking Mini- and Macrocolumn-Scale Functionality

    Get PDF
    No generic function for the minicolumn ā€“ i.e., one that would apply equally well to all cortical areas and species ā€“ has yet been proposed. I propose that the minicolumn does have a generic functionality, which only becomes clear when seen in the context of the function of the higher-level, subsuming unit, the macrocolumn. I propose that: (a) a macrocolumn's function is to store sparse distributed representations of its inputs and to be a recognizer of those inputs; and (b) the generic function of the minicolumn is to enforce macrocolumnar code sparseness. The minicolumn, defined here as a physically localized pool of āˆ¼20 L2/3 pyramidals, does this by acting as a winner-take-all (WTA) competitive module, implying that macrocolumnar codes consist of āˆ¼70 active L2/3 cells, assuming āˆ¼70 minicolumns per macrocolumn. I describe an algorithm for activating these codes during both learning and retrievals, which causes more similar inputs to map to more highly intersecting codes, a property which yields ultra-fast (immediate, first-shot) storage and retrieval. The algorithm achieves this by adding an amount of randomness (noise) into the code selection process, which is inversely proportional to an input's familiarity. I propose a possible mapping of the algorithm onto cortical circuitry, and adduce evidence for a neuromodulatory implementation of this familiarity-contingent noise mechanism. The model is distinguished from other recent columnar cortical circuit models in proposing a generic minicolumnar function in which a group of cells within the minicolumn, the L2/3 pyramidals, compete (WTA) to be part of the sparse distributed macrocolumnar code
    • ā€¦
    corecore