6,696 research outputs found

    Extension of PRISM by Synthesis of Optimal Timeouts in Fixed-Delay CTMC

    Full text link
    We present a practically appealing extension of the probabilistic model checker PRISM rendering it to handle fixed-delay continuous-time Markov chains (fdCTMCs) with rewards, the equivalent formalism to the deterministic and stochastic Petri nets (DSPNs). fdCTMCs allow transitions with fixed-delays (or timeouts) on top of the traditional transitions with exponential rates. Our extension supports an evaluation of expected reward until reaching a given set of target states. The main contribution is that, considering the fixed-delays as parameters, we implemented a synthesis algorithm that computes the epsilon-optimal values of the fixed-delays minimizing the expected reward. We provide a performance evaluation of the synthesis on practical examples

    A survey of the PEPA tools

    Get PDF
    This paper surveys the history and the current state of tool support for modelling with the PEPA stochastic process algebra and the PEPA nets modelling language. We discuss future directions for tool support for the PEPA family of languages.

    A versatile infinite-state Markov reward model to study bottlenecks in 2-hop ad hoc networks

    Get PDF
    In a 2-hop IEEE 801.11-based wireless LAN, the distributed coordination function (DCF) tends to equally share the available capacity among the contending stations. Recently alternative capacity sharing strategies have been made possible. We propose a versatile infinite-state Markov reward model to study the bottleneck node in a 2-hop IEEE 801.11-based ad hoc network for different adaptive capacity sharing strategies. We use infinite-state stochastic Petri nets (iSPNs) to specify our model, from which the underlying QBD-type Markov-reward models are automatically derived. The impact of the different capacity sharing strategies is analyzed by CSRL model checking of the underlying infinite-state QBD, for which we provide new techniques. Our modeling approach helps in deciding under which circumstances which adaptive capacity sharing strategy is most appropriate

    Novel Exploration Techniques (NETs) for Malaria Policy Interventions

    Full text link
    The task of decision-making under uncertainty is daunting, especially for problems which have significant complexity. Healthcare policy makers across the globe are facing problems under challenging constraints, with limited tools to help them make data driven decisions. In this work we frame the process of finding an optimal malaria policy as a stochastic multi-armed bandit problem, and implement three agent based strategies to explore the policy space. We apply a Gaussian Process regression to the findings of each agent, both for comparison and to account for stochastic results from simulating the spread of malaria in a fixed population. The generated policy spaces are compared with published results to give a direct reference with human expert decisions for the same simulated population. Our novel approach provides a powerful resource for policy makers, and a platform which can be readily extended to capture future more nuanced policy spaces.Comment: Under-revie

    Bottlenecks in Two-Hop Ad Hoc Networks - Dividing Radio Capacity in a Smart Way

    Get PDF
    In two-hop ad hoc networks the available radio capacity tends to be equally shard among the contending stations, which may lead to bottleneck situations in case of unbalanced traffic routing. We propose a generic model for evaluating adaptive capacity sharing strategies. We use infinite-state stochastic Petri nets for modeling the system and use the logic CSRL for specifying the measures of interest

    Versatile Markovian models for networks with asymmetric TCP sources

    Get PDF
    In this paper we use Stochastic Petri Nets (SPNs) to study the interaction of multiple TCP sources that share one or two buffers, thereby considerably extending earlier work. We first consider two sources sharing a buffer and investigate the consequences of two popular assumptions for the loss process in terms of fairness and link utilization. The results obtained by our model are in agreement with existing analytic models or are closer to results obtained by ns-2 simulations. We then study a network consisting of three sources and two buffers and provide evidence that link sharing is approximately minimum-potential-delay-fair in case of equal round-trip times. \u
    • ā€¦
    corecore