264,499 research outputs found

    Modeling User Search-Behavior for Masquerade Detection

    Get PDF
    Masquerade attacks are a common security problem that is a consequence of identity theft. Prior work has focused on user command modeling to identify abnormal behavior indicative of impersonation. This paper extends prior work by modeling user search behavior to detect deviations indicating a masquerade attack. We hypothesize that each individual user knows their own file system well enough to search in a limited, targeted and unique fashion in order to find information germane to their current task. Masqueraders, on the other hand, will likely not know the file system and layout of another user's desktop, and would likely search more extensively and broadly in a manner that is different than the victim user being impersonated. We extend prior research by devising taxonomies of UNIX commands and Windows applications that are used to abstract sequences of user commands and actions. The experimental results show that modeling search behavior reliably detects all masqueraders with a very low false positive rate of 0.13%, far better than prior published results. The limited set of features used for search behavior modeling also results in large performance gains over the same modeling techniques that use larger sets of features

    UnifiedSSR: A Unified Framework of Sequential Search and Recommendation

    Full text link
    In this work, we propose a Unified framework of Sequential Search and Recommendation (UnifiedSSR) for joint learning of user behavior history in both search and recommendation scenarios. Specifically, we consider user-interacted products in the recommendation scenario, user-interacted products and user-issued queries in the search scenario as three distinct types of user behaviors. We propose a dual-branch network to encode the pair of interacted product history and issued query history in the search scenario in parallel. This allows for cross-scenario modeling by deactivating the query branch for the recommendation scenario. Through the parameter sharing between dual branches, as well as between product branches in two scenarios, we incorporate cross-view and cross-scenario associations of user behaviors, providing a comprehensive understanding of user behavior patterns. To further enhance user behavior modeling by capturing the underlying dynamic intent, an Intent-oriented Session Modeling module is designed for inferring intent-oriented semantic sessions from the contextual information in behavior sequences. In particular, we consider self-supervised learning signals from two perspectives for intent-oriented semantic session locating, which encourage session discrimination within each behavior sequence and session alignment between dual behavior sequences. Extensive experiments on three public datasets demonstrate that UnifiedSSR consistently outperforms state-of-the-art methods for both search and recommendation

    Modeling User Search Behavior for Masquerade Detection

    Get PDF
    Masquerade attacks are a common security problem that is a consequence of identity theft. This paper extends prior work by modeling user search behavior to detect deviations indicating a masquerade attack. We hypothesize that each individual user knows their own file system well enough to search in a limited, targeted and unique fashion in order to find information germane to their current task. Masqueraders, on the other hand, will likely not know the file system and layout of another user's desktop, and would likely search more extensively and broadly in a manner that is different than the victim user being impersonated. We identify actions linked to search and information access activities, and use them to build user models. The experimental results show that modeling search behavior reliably detects all masqueraders with a very low false positive rate of 1.1%, far better than prior published results. The limited set of features used for search behavior modeling also results in large performance gains over the same modeling techniques that use larger sets of features

    Using thematic ontologies for user- and group- based adaptive personalization in web searching

    Get PDF
    This paper presents Prospector, an adaptive meta-search layer, which performs personalized re-ordering of search results. Prospector combines elements from two approaches to adaptive search support: (a) collaborative web searching; and, (b) personalized searching using semantic metadata. The paper focuses on the way semantic metadata and the users’ search behavior are utilized for user- and group- modeling, as well as on how these models are used to re-rank results returned for individual queries. The paper also outlines past evaluation activities related to Prospector, and discusses potential applications of the approach for the adaptive retrieval of multimedia documents

    Masquerade Attack Detection Using a Search-Behavior Modeling Approach

    Get PDF
    Masquerade attacks are unfortunately a familiar security problem that is a consequence of identity theft. Detecting masqueraders is very hard. Prior work has focused on user command modeling to identify abnormal behavior indicative of impersonation. This paper extends prior work by presenting one-class Hellinger distance-based and one-class SVM modeling techniques that use a set of novel features to reveal user intent. The specific objective is to model user search profiles and detect deviations indicating a masquerade attack. We hypothesize that each individual user knows their own file system well enough to search in a limited, targeted and unique fashion in order to find information germane to their current task. Masqueraders, on the other hand, will likely not know the file system and layout of another user's desktop, and would likely search more extensively and broadly in a manner that is different than the victim user being impersonated. We extend prior research that uses UNIX command sequences issued by users as the audit source by relying upon an abstraction of commands. We devise taxonomies of UNIX commands and Windows applications that are used to abstract sequences of user commands and actions. We also gathered our own normal and masquerader data sets captured in a Windows environment for evaluation. The datasets are publicly available for other researchers who wish to study masquerade attack rather than author identification as in much of the prior reported work. The experimental results show that modeling search behavior reliably detects all masqueraders with a very low false positive rate of 0.1%, far better than prior published results. The limited set of features used for search behavior modeling also results in huge performance gains over the same modeling techniques that use larger sets of features
    • …
    corecore