
Modeling User Search-Behavior for Masquerade
Detection

Malek Ben Salem1 and Shlomo Hershkop1 Salvatore J. Stolfo1

Columbia University, New York NY 10027, USA,
{malek,shlomo,sal}@cs.columbia.edu

Abstract. Masquerade attacks are a common security problem that is
a consequence of identity theft. Prior work has focused on user command
modeling to identify abnormal behavior indicative of impersonation. This
paper extends prior work by modeling user search behavior to detect
deviations indicating a masquerade attack. We hypothesize that each
individual user knows their own file system well enough to search in a
limited, targeted and unique fashion in order to find information ger-
mane to their current task. Masqueraders, on the other hand, will likely
not know the file system and layout of another user’s desktop, and would
likely search more extensively and broadly in a manner that is different
than the victim user being impersonated. We extend prior research by
devising taxonomies of UNIX commands and Windows applications that
are used to abstract sequences of user commands and actions. The ex-
perimental results show that modeling search behavior reliably detects
all masqueraders with a very low false positive rate of 0.13%, far better
than prior published results. The limited set of features used for search
behavior modeling also results in large performance gains over the same
modeling techniques that use larger sets of features.

1 Introduction

The masquerade attack is a class of attacks, in which a user of a system ille-
gitimately poses as, or assumes the identity of another legitimate user. Identity
theft in financial transaction systems is perhaps the best known example of this
type of attack. Masquerade attacks are extremely serious, especially in the case
of an insider who can cause considerable damage to an organization. The insider
attack detection problem remains one of the more important research areas re-
quiring new insights to mitigate against this threat.

A common approach to counter this type of attack, which has been the
subject of prior research, is to apply machine learning algorithms that produce
classifiers which can identify suspicious behaviors that may indicate malfeasance
of an impostor. We do not focus on whether an access by some user is authorized
since we assume that the masquerader does not attempt to escalate the priv-
ileges of the stolen identity, rather the masquerader simply accesses whatever
the victim can access. However, we conjecture that the masquerader is unlikely

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161437884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Ben Salem, Hershkop, and Stolfo

to know the victim’s search behavior when using their own system which com-
plicates their task to mimic the user. It is this key assumption that we rely
upon in order to detect a masquerader. The conjecture is backed up with real
user studies. 48 users were monitored for 7 days on average to produce more
than 10 GBytes of data that we analyzed and modeled. The results show that
indeed users display considerably different search behavior, and that that be-
havior is an effective tool to detect masqueraders. After all, a user will search
within an environment they have created. We assume the attacker has little to
no knowledge of that environment and that lack of knowledge will be revealed
by the masquerader’s abnormal search behavior. Thus, our focus in this paper is
on monitoring a user’s behavior in real time to determine whether current user
actions are consistent with the user’s historical behavior, primarily focused on
their unique search behavior. The far more challenging problems of thwarting
mimicry attacks and other obfuscation techniques are beyond the scope of this
paper.

Masquerade attacks can occur in several different ways. In general terms,
a masquerader may get access to a legitimate user’s account either by stealing
a victim’s credentials, or through a break in and installation of a rootkit or
key logger. In either case, the user’s identity is illegitimately acquired. Another
perhaps more common case is laziness and misplaced trust by a user, such as the
case when a user leaves his or her terminal or client open and logged in allowing
any nearby co-worker to pose as a masquerader. In the first two cases, the identity
thief must log in with the victim’s credentials and begin issuing commands within
the bounds of one user session. We conjecture that legitimate users initiate the
same repeated commands each time they log in to set their environment before
using it, initiate some set of applications (read email, open a browser, or start
a chat session) and similarly, clean up and shut down applications when they
log off. Such repeated behaviors constitute a profile that can be modeled and
used to check the authenticity of a user session early before significant damage
is done. The case of hijacking a user’s session is perhaps a bit more complicated.
In either case, a monitoring system ought to detect any significant deviations
from a user’s typical profiled behaviors in order to detect a likely masquerade
attack. Ideally, we seek to detect a possible masquerader at any time during a
session.

In this paper we extend prior work on modeling user command sequences for
masquerade detection. Previous work has focused on auditing and modeling se-
quences of user commands including work on enriching command sequences with
information about arguments of commands [20, 13, 23]. We propose an approach
to profile a user’s behavior based on a ’taxonomy’ of UNIX commands and
Windows applications. The taxonomy abstracts the audit data and enriches the
meaning of a user’s profile, thus helping reveal the user’s intent. Hence, com-
mands or applications that perform similar types of actions are grouped together
in one category making profiled sequences more abstract and meaningful. Most
importantly, the use of the taxonomy significantly reduces the dimensionality
of the feature space, and thereby reducing the complexity of the computa-



Modeling User Search-Behavior for Masquerade Detection 3

tion. Furthermore, modeling sequences of commands is complicated whenever
”Never-Before-Seen-Commands” are observed. A command taxonomy reduces
this complexity, since any distinct command is replaced by its category, which
is very likely to have been observed in the past. Commands are thus assigned
a type, and the sequence of command types is modeled rather than individual
commands.

One particular type of command is information gathering commands, i.e.
search commands. We conjecture that a masquerader is unlikely to have the
depth of knowledge of the victim’s machine (files, locations of important direc-
tories, available applications, etc.), and hence, a masquerader would likely first
perform information gathering and search commands before initiating specific
actions. To this extent, we conduct a second set of experiments using a Windows
data set that we have gathered in our department. We model search behavior in
Windows and test our modeling approach using our own data, which we claim
is more suitable for evaluating masquerade attack detection methods.

1.1 Contributions

The contributions of this work are:

– A taxonomy of Windows applications and DLLs and a similar taxon-
omy of Linux and Unix user commands: The taxonomies are used to
abstract and enrich the meaning of user activities performed on the host sys-
tem. This abstraction enables the reduction of features used for user behavior
profiling, and therefore a significant decrease in computational complexity.
As a by-benefit, it also eliminates a problem known as ”‘Never-Before-Seen-
Commands”’, which has a negative impact on the accuracy of any classifier.

– A small set of search-related features for masquerade attack detection:
The limited number of features reduces the amount of sampling required
to collect training data. Reducing the high-dimensional modeling space to
a low-dimensional one allows for the improvement of both accuracy and
performance over prior approaches. We shall use standard machine learning
techniques to evaluate the performance of a system composed of these fea-
tures. Other work has evaluated alternative algorithms. Our focus in this
work is on the features that are modeled. The best masquerade attack de-
tection accuracy using a modern ML algorithm, Support Vector Machines
(SVMs). SVM models are easy to update, providing an efficient deployable
host monitoring system.

– A Windows data set collected specifically to study the masquerade
attack detection problem as opposed to the author identification prob-
lem: The data set consists of normal user data collected from a homogeneous
user group of 48 individuals as well as simulated masquerader data from 14
different individuals. The data set collected on Windows XP machines is the
first publicly available data set for masquerade attack detection since the
Schonlau dataset [19].



4 Ben Salem, Hershkop, and Stolfo

1.2 Paper Outline

In section 2 of this paper, we briefly present the results of prior research work
on masquerade detection. Section 3 expands on the objective and the approach
taken in this work, and presents the experiments conducted to evaluate whether a
command taxonomy impacts the efficacy of user behavior models. In section 4, we
present our home-gathered dataset which we call the RUU dataset. In section 5,
we discuss experiments conducted by modeling search behavior using the RUU
dataset. In Section 6, we discuss potential limitations of our approach and how
such limitations could be overcome. Finally Section 7 concludes the paper by
summarizing our results and contributions, and presenting our ongoing work to
improve and better evaluate the proposed modeling approach.

2 Related Work

In the general case of computer user profiling, the entire audit source can include
information from a variety of sources, such as command line calls issued by
users, system calls monitoring for unusual application use/events, database/file
accesses, and the organization policy management rules and compliance logs. The
type of analysis used is primarily the modeling of statistical features, such as the
frequency of events, the duration of events, the co-occurrence of multiple events
combined through logical operators, and the sequence or transition of events.
However, most of this work failed to reveal or clarify the user’s intent when
issuing commands or running processes. The focus is primarily on accurately
detecting change or unusual command sequences. In this section, we focus on
the approaches reported in the literature that profile users by the commands
they issue.

Schonlau et al. [20] applied six masquerade detection methods to a data set
of ”truncated” UNIX commands for 70 users collected over a several month
period. Each user had 15,000 commands collected over a period of time ranging
between a few days and several months [19]. 50 users were randomly chosen to
serve as intrusion targets. The other 20 users were used as masqueraders. The
first 5000 commands for each of the 50 users were left intact or ”clean”, the next
10,000 commands were randomly injected with 100-command blocks issued by
the 20 masquerade users. The commands have been inserted at the beginning of
a block, so that if a block is contaminated, all of its 100 commands are inserted
from another user’s list of executed commands. The complete data set and more
information about it can be found at http://www.schonlau.net. The objective
was to accurately detect the ”dirty” blocks and classify them as masquerader
blocks. It is important to note that this dataset does not constitute ground truth
masquerade data, but rather simulates impersonation.

The first detection method applied by Schonlau et al. for this task, called
”uniqueness”, relies on the fact that half of the commands in the training data
are unique and many more are unpopular amongst the users. Another method
investigated was the Bayes one-step Markov approach. It is based on one step
transitions from one command to the next. The approach, due to DuMouchel



Modeling User Search-Behavior for Masquerade Detection 5

(1999), uses a Bayes factor statistic to test the null hypothesis that the observed
one-step command transition probabilities are consistent with the historical tran-
sition matrix.

A hybrid multi-step Markov method has also been applied to this dataset.
When the test data contain many commands unobserved in the training data, a
Markov model is not usable. Here, a simple independence model with probabili-
ties estimated from a contingency table of users versus commands may be more
appropriate. The method used automatically toggles between a Markov model
and an independence model generated from a multinomial random distribution
as needed, depending on whether the test data are ”usual”, i.e. the commands
have been previously seen, or ”unusual”, i.e. Never-Before-Seen Commands (NB-
SCs). We note with interest that our taxonomy of commands reduces, if not
entirely eliminates, the problem of modeling ”Never-Before-Seen-Commands”
since any command is likely to be categorized in one of the known classes speci-
fied in the taxonomy. Hence, although a specific command may never have been
observed, members of its class probably were.

IPAM (Incremental Probabilistic Action Modeling), another method applied
on the same dataset, and used by Davidson & Hirsch to build an adaptive com-
mand line interface, is also based on one-step command transition probabilities
estimated from the training data [10, 9]. A compression method has been also
applied to the Schonlau data set based on the premise that test data appended
to historical training data compress more readily when the test data stems in-
deed from the same user rather than from a masquerader, and was implemented
through the UNIX tool compress which implements a modified Lempel-Ziv algo-
rithm. A sequence-match approach has been presented by Lane & Brodley [11].
For each new command, a similarity measure between the 10 most recent com-
mands and a user’s profile is computed.

A method, that is significantly different from other intrusion detection tech-
nologies, was presented by Coull et al. [7]. The method is known as semi-global
alignment and is a modification of the Smith-Waterman local alignment algo-
rithm. The authors enhanced the method and presented a sequence alignment
method using a binary scoring and a signature updating scheme to cope with
concept drift [8]. This paper also introduces the notion of grouping commands
into categories and modeling sequences of these groups. Their grouping of com-
mands for Unix shells is not a complete taxonomy as provided in our work. Their
results showed a degradation of performance counter to what we report here.
This paper shows no significant loss of information when using the taxonomy.
Moreover, it shows significant efficiency improvement when modeling sequences
of categories of commands or Windows applications as opposed to modeling se-
quences of simple commands, due to the significant reduction of the number
of features modeled. This is even more significant in Windows than in Unix,
as there are thousands of Windows applications versus hundreds of Unix com-
mands. The efficiency improvements makes the method practical in a real-world
sensor.



6 Ben Salem, Hershkop, and Stolfo

Table 1. Summary of accuracy performance of Anomaly Detectors Using the Schonlau
Data Set

Method True Pos. (%) False Pos.(%)

Uniqueness [20] 39.4 1.4

Bayes one-step Markov [20] 69.3 6.7

Hybrid multi-step Markov [20] 49.3 3.2

Compression [20] 34.2 5.0

Sequence Match [11, 20] 26.8 3.7

IPAM [10, 9, 20] 41.1 2.7

Näıve Bayes (Updating) [13] 61.5 1.3

Näıve Bayes (No Upd.) [13] 66.2 4.6

Semi-Global Alignment [7] 75.8 7.7

Sequence Alignment (Updating) [8] 68.6 1.9

Eigen Co-occurrence Matrix [16] 72.3 2.5

Oka et al. [17, 16] had the intuition that the dynamic behavior of a user ap-
pearing in a sequence can be captured by correlating not only connected events,
but also events that are not adjacent to each other while appearing within a
certain distance (non-connected events). Based on that intuition they have de-
veloped the layered networks approach based on the Eigen Co-occurrence Matrix
(ECM).

Maxion and Townsend [13] applied a näıve Bayes classifier, which has been
widely used in text classification tasks, and they provided a thorough and de-
tailed investigation of classification errors [14] highlighting why some masquerade
victims are more vulnerable than others, and why some masqueraders are more
successful than others. Maxion and Townsend also designed a new experiment,
which they called the ”1v49” experiment, in order to conduct this error analysis.
Another approach called a self-consistent näıve Bayes classifier was proposed by
Yung [24] and applied on the same data set. Wang and Stolfo used a näıve Bayes
classifier and a Support Vector Machine (SVM) to detect masqueraders [23].
Their experiments confirmed, that for masquerade detection, one-class training
is as effective as two class training.

These specific algorithms and the results achieved for the Schonlau dataset
appear in Table 1 (with True Positive rates displayed rather than True Nega-
tives). Performance is shown to range from 1.3% - 7.7% False Positive rates, with
a False Negative rate ranging from 24.2% to 73.2% (alternatively, True Positive
rates from 26.8% to 75.8%). Clearly, these results are far from ideal. The problem
of effective and practical masquerade detection remains quite challenging.

Finally, Maloof and Stephens proposed a general system for detecting mali-
cious insider activities by specifically violations of ”Need-to-Know” policy [12].
Although the work is not aimed directly at masquerade detection, such a sys-
tem may reveal actions of a masquerader. They define certain scenarios of bad
behavior and combine evidence from 76 sensors to identify whether a user is
malicious or not.



Modeling User Search-Behavior for Masquerade Detection 7

3 Objective and Approach

When dealing with the masquerader attack detection problem, it is important
to remember that the attacker has already obtained credentials to access a sys-
tem. When presenting the stolen credentials, the attacker is then a legitimate
user with the same access rights as the victim user. Ideally, monitoring a user’s
actions after being granted access is required in order to detect such attacks.
Furthermore, if we can model the user’s intent, we may better determine if the
actions of a user are malicious or not. We have postulated that certain classes
of user commands reveal user intent. For instance, search should be an inter-
esting behavior to monitor since it indicates the user lacks information they are
seeking. Although user search behavior has been studied in the context of web
usage mining [3, 2, 15], it has not been used in the context of intrusion detec-
tion. We define a taxonomy of commands to readily identify and model search
behavior which appear using a variety of system-level and application-specific
search functions. Another behavior that is interesting to monitor is remote ac-
cess to other systems and the communication or egress of large amounts of data
to remote systems, which may be an indication of illegal copying or distribution
of sensitive information. Once again, the taxonomy defined allows a system to
automatically audit and model a whole class of commands and application func-
tions that represent the movement or copying of data. User behavior naturally
varies for each user. We believe there is no one model or one easily specified
policy that can capture the inherent vagaries of human behavior. Instead, we
aim to automatically learn a distinct user’s behavior, much like a credit card
customer’s distinct buying patterns.

Our objective is to model the normal pattern of submitted commands of a
certain user in a UNIX environment assuming that the masquerader will exhibit
different behavior from the legitimate user and this deviation will be easily no-
ticed. Hence, this approach essentially tracks a user’s behavior and measures any
changes in that behavior. Any significant change will raise an alarm. In the fol-
lowing subsection, we present the command taxonomy that we have developed.

3.1 User Command Taxonomy

We abstract the set of Linux/Unix commands and Windows applications into a
taxonomy of command categories as presented in Figure 1(a). In particular, we
are interested in identifying the specific set of commands that reveal the user’s
intent to search, to change access control privileges, and to copy or print informa-
tion. Once these commands are identified, we can extract features representing
such behavior while auditing the user’s behavior.

The Unix taxonomy has 14 different categories: Access Control, Applica-
tions, Communications and Networking, Display and Formatting, Execution and
Program Control, File System, I/O Peripherals, Information Gathering, Other,
Process Management, System Management, Unknown, and Utilities. Most cat-
egories were further classified into sub-categories, however some did not require



8 Ben Salem, Hershkop, and Stolfo

(a) Taxonomy of Linux and Unix user commands

(b) Taxonomy of Windows applications
Fig. 1. Taxonomy of Linux and Unix Commands (a) and Windows applications (b)

more granularity, such as the Resource Management category. The Informa-
tion Gathering category includes commands such as find and fgrep. Examples
of commands in the Process Management category include kill, nohup, and
renice. date, clock and cal are examples of commands that fall in the Utili-
ties category. The Other category includes commands that have been recognized
but could not be classified under any other category, such as abs. However, the



Modeling User Search-Behavior for Masquerade Detection 9

Unknown category includes commands that were not identified or script names
that are not recognizable. The Windows taxonomy is discussed in Section 5.

3.2 One-Class Support Vector Machine Experiment

One-Class Support Vector Machines SVMs are linear classifiers used for
classification and regression. They are known as maximal margin classifiers
rather than probabilistic classifiers. Schölkopf et. al [18] proposed a way to adapt
SVMs to the one-class classification task. The one-class SVM algorithm uses ex-
amples from one class only for training. Just like in multi-class classification
tasks, it maps input data into a high-dimensional feature space using a kernel
function, such as the linear, polynomial, or Radial Basis Function (RBF) kernels.
The origin is treated as the only example from other classes. The algorithm then
finds the hyper-plane that provides the maximum margin separating the train-
ing data from the origin in an iterative manner. The kernel function is defined
as: k(x, y) = (Φ(x).Φ(y)),where x, y ∈ X, X is the training data set, and Φ is
the feature mapping to a high-dimensional space X → F . We note that SVMs
are suitable for block-by-block incremental learning. As user behavior changes
and new data is acquired, updating SVM models is straightforward and efficient.
Prior datat may be expunged and the support vectors computed from that data
are retained and used to compute a new update model using the new data [22,
21].

SVM Experimental Set-Up We used the LIBSVM package [5] to conduct
our SVM experiments. It supports both multi-class classification and one-class
classification. The one-class SVM function provided by this tool uses the RBF
kernel. We have used the one-class modeling option with the default settings to
conduct the experiments. We have created a new version of the LIBSVM code,
so that the one-class prediction models output the probability that a vector
belongs to the “self” class, rather than output the classification value “self” or
“non-self”. We have used two different ways to represent features. The first is
frequency-based where we count the number of times a simple command or a
command category, retrieved using the command taxonomy, appears in the data
set. The second approach is binary where we indicate whether the command or
command category is present in the data set.

SVM Experiment Results In this experiment we follow the methodology de-
scribed in [20, 23], and we show that the performance of one-class SVMs (ocSVM)
using command categories per our taxonomy is essentially the same as the per-
formance of ocSVM that uses simple commands. We use the first 5000 commands
of a user as positives examples for training the model. No negative examples are
used for training. Then we test the classifier using the remaining 10,000 com-
mands of the user, which may have injected command blocks from other users
under a probability distribution described [19], which we will refer to as the
“dirty” blocks.



10 Ben Salem, Hershkop, and Stolfo

Table 2. ocSVM Experimental Results

Method True Pos. (%) False Pos. (%)

ocSVM w/ simple cmds 98.7 66.47
(freq.-based model)

ocSVM w/ taxonomy 94.8 60.68
(freq.-based model)

ocSVM w/ simple cmds 99.13 66.8
(bin. model)

ocSVM w/ taxonomy 86.58 56.9
(bin. model)

Table 2 shows the results achieved by the one-class SVM classifiers. The
ocSVMs that use the command taxonomy achieve better false alarm rates in both
cases, when using the frequency-based model and when using the binary model.
With the frequency-based model, the ocSVM using the command taxonomy
also achieves comparable results with the ocSVM using simple commands. This
is not true for the ocSVM using the binary feature. This can be explained by
the difficulty to build representative models for the users based on a binary
vector that only has 14 components, since the taxonomy is only made up of
14 different categories, particularly when the training data set includes 5,000
commands. With such a number of commands, the chances that all 14 categories
of commands are represented are relatively high, and therefore the binary models
built for the users will be very similar, i.e. the classifier will be unable to correctly
decide whether a test command block is a self block or a masquerader block.

As mentioned, we modified the LIBSVM code so that the one-class prediction
models output a probability that a vector belongs to the ”self” class, rather
than output the classification value “self” or “non-self”. We have used these
prediction values to build ROC curves for each model/user, and we show the
corresponding AUC scores in Figure 2. The AUC scores show that, when using
the frequency-based model to build the feature vectors, using the command
taxonomy is comparable to modeling simple commands.

3.3 Discussion of the Schonlau Data Experiments

Unlike a modeling approach based on frequencies of simple commands, the
taxonomy-based approach would not raise an alarm for a masquerader if, for
instance, the same legitimate user starts running a different C compiler than
what he or she normally uses. Both compilers used should be under the Applica-
tions category. So if the user behaves consistently, even if compilers change, the
user model does not change if we use our taxonomy-based approach. However,
using the simple commands approach might raise an alarm for a masquerade.
Therefore, our approach is expected to limit the occurrences of false positives.
Moreover, the taxonomy-based approach tends to reduce the problem of mod-
eling “Never-Before-Seen-Commands” since any command is likely to be placed



Modeling User Search-Behavior for Masquerade Detection 11

Fig. 2. Comparison of AUC scores achieved using the 4 models in the SVM experiment

in a category with other similar commands, i.e., although a specific command
may never have been observed, members of its class probably were.

The results shown above confirm that the information that is lost by com-
pressing the different user shell commands into a few categories does not affect
the masquerader detection ability significantly. In order to further test this ap-
proach, we gathered simulated masquerader data by conducting a user study
under IRB approval that will be described in the next section. This is a crucial
step: The Schonlau datasets are not “true Masquerader” data sets. The data
from different users were randomly mixed standing as a simulation of a mas-
querader attack. A willful act of malfeasance after identity theft is yet to be
tested, albeit there is no generally available data set of this nature for scientific
study. Hence, Schonlau resorted to simulating this malfeasance in as simple a
fashion as possible, monitoring different users and mixing their data. It is fair
to say, this mixture does NOT represent true malfeasance and willful intent.

In the next section, we describe the data that we have gathered, which we
refer to as the RUU (Are You You?) dataset. The methodology and results
described in the next section cannot be applied to the Schonlau datasets. The
data captured lacks timestamps associated with the user commands. Hence, the
modeling we propose that includes rates of emitted user events cannot be applied
to the Schonlau datasets. As we shall see, the results achieved are far better with
this new approach to modeling user behavior.

4 Data Gathering and “Capture The Flag” Exercise

In order to evaluate the search-behavior modeling approach, we needed to gather
data, both normal user data and simulated masquerader data. To achieve this,
we developed host sensors that could audit user activity and capture the data
of interest.



12 Ben Salem, Hershkop, and Stolfo

4.1 Host Sensors

Two host sensors were developed: one for Windows and one for Linux. The
Windows sensor monitored all registry-based activity, process creation and de-
struction, window GUI access, and DLL libraries activity. The data gathered
consisted of the process name and ID, the process path, the parent of the pro-
cess, the type of process action (e.g., type of registry access, process creation,
process destruction, etc.), the process command arguments, action flags (success
or failure), and registry activity results. A time stamp was also recorded for
each audit record. The Windows sensor uses a low-level system driver, DLL reg-
istration mechanisms, and a system table hook to monitor activity. The Linux
sensor used a kernel hook to audit all events on the host. It collected all pro-
cess IDs, process names, and process command arguments in real time. The
hooking mechanism used is the auditd daemon included in most modern Linux
distributions.

4.2 RUU Dataset

Thirty four computer science students installed the Windows host sensor on their
personal computers. The host sensor collected the data described in the previous
subsection and uploaded it to a server, after the students had the chance to filter
any data that they were not willing to share. The students signed an agreement
for sharing their data with the research community. This unique dataset with
a size of more than 10 GBytes is available for download. The data collected
for each student was an average of 7 days worth of normal user data, ranging
between 1 day and 19 days, and an average of more than 1 million records per
user. The data collected for each user is approximately the same per day per
user. What varies significantly is the amount of “search” behavior exhibited by
each user. The impact on the user model performance is described in section 5.3.

To obtain masquerader data, we developed a “capture the flag” exercise
in our lab with user volunteers acting as masqueraders. 14 computer science
students participated in the exercise, where they had unlimited access to the
same file system for 15 minutes each. The exercise was conducted on different
week days and at varying times during the day. None of the users had access to
this file system before, which was designed to look very realistic and to include
potentially interesting patent applications, personally identifiable information, as
well as account credentials. The file system had files totaling a size of more than
20 GBytes. The files were copied from a modern Windows XP machine routinely
used in a university research environment. They were created over a period of 5
years. The contents of certain personal files were sanitized, so that no personal
information was leaked. We also installed applications that typical computer
science students would have on their own machines, such as programming APIs,
media players, etc together with code projects, games, music, and video files.
The goal was to make this machine look similar to the ones that the normal
users in our experiment were using.



Modeling User Search-Behavior for Masquerade Detection 13

The students were handed a scenario where they were asked to perform a
specific task, which consisted of finding any information that could be used for
financial gain. The scenario clearly described the financial difficulties that the
user was going through and the personal problems they were having with the
computer’s owner, a co-worker; In particular, they believed that their co-worker
had been undeservingly promoted instead of them, making any PII information
theft or the cause of financial damage to their colleague, that they might engage
into, justifiable to them. The task was goal-specific in order to capture the intent
of the users. It is also important to mention that the users knew they were
being monitored and that they were not specifically asked to search the file
system in the scenario, i.e. some users could decide to look into the computer
owner’s e-mail, which constitutes another approach for information gathering,
instead of searching their files. After completing the task, the participants filled
a questionnaire about their experience and behavior during the task, and how
different it was from their normal search behavior.

5 RUU Data Experiment

5.1 Modeling

A similar taxonomy to the user command taxonomy described in Section 3.1
was developed for Windows applications and DLLs. The taxonomy displayed
in Figure 1 was particularly focused on categorizing search and information
gathering applications, as well as document editing applications.

The data was grouped into 60 second quanta of user activity, and a total of 7
features were extracted for each of those epochs. Five of the features were only
dependent on the events and data within the 60 second period of user activity:

1. Number of search actions: Specific sections of the Windows registry, spe-
cific DLL’s, and specific programs on the system are correlated with system
searching. For the 60 second time of user activity, we model all search actions
of a user.

2. Number of Internet browsing-related actions
3. Number of development- and programming-related actions
4. Number of desktop games-related actions
5. Number of media-related actions (e.g. listening to music, watching video,

etc.)

The other two features indicate at what time the user actions were performed.
These are as follows.

6. Number of minutes elapsed since the start of the day, which could take a
value between 0 and 24*60-1= 1439

7. Number of minutes elapsed since the start of the user session



14 Ben Salem, Hershkop, and Stolfo

We chose simple search features that characterize search volume and velocity
to test our hypothesis. More complex search features that describe user search
patterns could be extracted. Such features include, but are not limited to search
terms and directory traversals. Evaluation of these features is the subject of our
future work.

5.2 Experimental Methodology

For each of the 48 normal users, the first 75% of their data was used for training
a one-class SVM model. The user’s test data and the masquerader data were
kept separate. We have noticed that some of the processes running on users’
computers belonged to malware and spyware programs. We have classified those
processes as Malware or Spyware respectively and have not included the records
that featured such processes for modeling and testing. The computer that we
have used to run the ”‘capture the flag”’ exercise did not have any such programs
running. Therefore, we did not want such records to skew the accuracy results.

After the baseline models were computed, the same features used in the model
were extracted for the test data after dividing them into 60 second quanta of
user activity. The models were tested against these features, and an empirically
identified threshold was used to determine whether the user activity during the
60 second period was normal or abnormal. If the user activity was performed by
the normal user, but was classified as abnormal by the ocSVM model, a false
positive is recorded.

5.3 Detection Accuracy Evaluation

For evaluation purposes we have conducted two experiments. In the first one,
we have used one-class SVM models using the 7 features listed in Section 5.1. In
the second experiment, we have used the frequency of applications and processes
within the 60 second time quanta as features for the ocSVM models. This is the
modeling approach that achieved results comparable to those achieved by the
näıve Bayes approach when applied to the Schonlau dataset [23].

Using the search-behavior modeling approach, 100% of the 60-second quanta
that included masquerader activity were detected as abnormal, while 0.13% of
the ones with legitimate user activity were flagged as not confirming to the user’s
normal behavior. The results achieved are displayed in Table 3. The FP rate
is significantly reduced compared to the application frequency-based modeling
approach, while a perfect detection rate is achieved. These results aubstantially
outperform the results reported in the literature so far.

Figure 3 depicts the number of ROC curves having AUC scores higher than
a certain value for the search behavior modeling approach. The average AUC
score achieved for all ROC curves is 0.98. For 33 users, the AUC score is equal
to 1 indicating the absence of any false positives.

Recall that the RUU data set consists of user data with varying amounts of
data for different users. The amount of search behavior information varied from
user to user. False positives were higher for users who contributed less data in



Modeling User Search-Behavior for Masquerade Detection 15

Fig. 3. The number of user models with AUC values greater than the value displayed
on the x-axis for the search behavior modeling using one-class SVMs. (The upper-left
point shows 48 user models with AUC scores greater than 0.9)

general and less search-related data in particular than for those for which we
collected a large amounts of such data, which proves the need for more training
data in order to improve the performance of the user models.

The significant accuracy improvement achieved can be explained by the fact
that masqueraders were focused on a clear objective, namely finding information
that could be used for financial gain. Whereas, the legitimate users were perform-
ing their daily tasks, such as writing programs, compiling code, sending e-mails
or exchanging instant messages, possibly while browsing the web, listening to
music, or occasionally playing games. Varying combinations of these activities
during different times of the day characterize user behavior. We conjecture that
masquerade attackers would be unlikely to listen to music or search the web
while searching for credit card numbers on the host.

Despite the simplicity of the search features used, which only characterize
search volume and velocity, we were able to reliably detect masqueraders. We
note that 4 of the 14 masqueraders indicated in the questionnaires that they
filled out, that their strategy for finding relevant information started by quickly
scanning the most recently opened documents, or the list of bookmarks. However,

Table 3. Experimental results of ocSVM modeling approaches using search-behavior
related features and application frequency features

Method True Pos. (%) False Pos. (%)

Search-behavior ocSVM 100 0.13

App.-freq. ocSVM 91.2 32.1



16 Ben Salem, Hershkop, and Stolfo

they still engaged in a wider search activity eventually when these sources proved
fruitless.

In an operational monitoring system, one would be concerned with the error
rate of a detector. The downside of a false positive is essentially annoyance by
a legitimate user who may be alerted too frequently. An interesting problem to
study is how to calibrate the modeling and detection frequency to balance the
detector’s false positive rate while ensuring its false negative rate is minimized.
False negatives in this context, i.e., an undetected masquerader, are far more
dangerous than an annoying false positive. A thorough evaluation of the right
model checking and alerting frequency in light of average search times on a file
system inter alia is the subject of ongoing research. Another focus of ongoing
research is the correlation of search behavior anomaly detection with trap-based
decoy files such as [4]. This should provide stronger evidence of malfeasance,
and therefore improve the detector’s accuracy. Not only would a masquerader
not know the file system, they would also not know the detailed contents of
that file system especially if there are well placed traps that they cannot avoid.
We conjecture that detecting abnormal search operations performed prior to an
unsuspecting user opening a decoy file will corroborate our suspicion that the
user is indeed impersonating another victim user. Furthermore, an accidental
opening of a decoy file by a legitimate user might be recognized as an accident if
the search behavior is not deemed abnormal. In other words, detecting abnormal
search and decoy traps together may make a very effective masquerade detection
system. Ongoing work should establish evidence to corroborate this conjecture.

5.4 Performance Evaluation

Computational Complexity Our experiment can be divided into five main
steps: identifying the features to be used for modeling, extracting the features to
build the training and testing files, normalizing those features using the LibSVM
scaling routine, building a oCSVM for each normal user, and finally testing each
ocSVM against the test data. We discuss the computational complexity of each
of these steps for one user model.

Let o be the total number of raw observations in the input data. We use this
data to compute and output the training vectors xi ∈ Rn, i = 1, ..., l and testing
vectors xj ∈ Rn, j = 1, ...,m for each user u, where n is the number of features
used for modeling.

When using the application frequency features, this step requires reading all
training data (about 0.75 of all observations o) in order to get the list of unique
applications in the dataset. This step can be merged with the feature extraction
step, but it would require more resources, as the feature vectors would have to
remain in memory for updates and additions of more features. we chose to run
this step in advance in order to simplify our program. This step is not required
for the search behavior profiling approach, as all features are known in advance.

In the feature extraction step, we go through all input data once, grouping the
observations that fall within the same epoch, and calculate and output n features
for that epoch. This operation has a time complexity of O(o+ n× (l +m)).



Modeling User Search-Behavior for Masquerade Detection 17

Chang and Lin [6] show that the computational complexity of the train-
ing step for one user model is O(n × l)×#Iterations if most columns of Q
are cached during the iterations required ; Q is an l by l semidefinite matrix,
Qij ≡ yiyjK(xi, xj); K(xi, xj) ≡ φ(xi)

Tφ(xj) is the kernel; each kernel evalua-
tion is O(n); and the iterations referred to here are the iterations needed by the
ocSVM algorithm to determine the optimal supporting vectors.

The computational complexity of the testing step is O(n×m) as the kernel
evaluation for each testing vector yj is O(n). We experimentally validate the
complexity analysis in the next section to determine whether we have improved
performance both in terms of accuracy and speed of detection.

Performance Results We ran our experiments on a regular laptop with a
2.66GHz Intel Xeon Dual Core processor and 24GB of memory in a Windows 7
environment. We measure the average running time of each step of the exper-
iment over three runs. The results are recorded in table 4. As we pointed out
in the previous section, the very first step is not executed in the our proposed
search behavior modeling approach, but it takes more than 19 minutes when
using the application frequency modeling approach. The running time of the
feature extraction step shows that the number of raw observations in the raw
data dominates the time complexity for this step. We point out that the RUU
data set contains more than 40 million records of data.

The training and testing vectors are sparse, since only a limited number of
the 1167 different applications could conceivably run simultaneously within a
60-second epoch. This explains why the 166.7 ratio of features does not apply
to the running time of the training and testing steps, even though these running
times depend on the number of features n. All of these differences in running
times culminate in a total performance gain of 47.5% when using the search
behavior model versus the application frequency model typical of prior work.
This computational performance gain coupled with improved accuracy could
prove to be a critical advantage when deploying the sensors in an operation
environment if a system design includes automated responses to limit damage
caused by an insider attack.

Table 4. Performance comparison of ocSVM modeling approaches using search-
behavior related features and application frequency features

Step ocSVM ocSVM

app. freq. search-beh.

Identifying Features (min) 19.5 0

Extracting Features (min) 149 92

Training (min) 9 1.5

Testing (min) 3.5 1.5

Total (min) 181 95



18 Ben Salem, Hershkop, and Stolfo

6 Limitations

An attacker could try to evade the monitoring system by renaming applications
so that they are assigned to a different category. Although we have not imple-
mented a monitoring strategy to counter this evasive tactic, it is clear that a
simple extension to the monitoring infrastructure can account for this case.

We assume that the attacker does not have knowledge about the victim’s
behavior, for instance, whether the victim typically tends to play games while
working and searching their file system. However, if the attacker does have such
prior knowledge, we propose combining user behavior profiling with monitoring
access to well-placed decoy files in the file system (as explained in Section 5.3)
in order to limit the success of evasion.

The taxonomy has to be updated as new applications are loaded. In the cur-
rent proof-of-concept implementation, any non-recognized application or process
is added to the Unknown category. Over time as the users keep downloading new
software that has not been included in the taxonomy, the quality of the user
model may degrade, as the use of these applications will not be modeled cor-
rectly. Clearly, this is a straightforward update to the monitoring infrastructure.

7 Discussion and Concluding Remarks

Masquerade attacks (such as identity theft and fraud) are a serious computer
security problem. We conjecture that individual users have unique computer
search behavior which can be profiled and used to detect masquerade attacks.
The behavior captures the types of activities that a user performs on a computer
and when they perform them.

The use of search behavior profiling for masquerade attack detection permits
limiting the range and scope of the profiles we compute about a user, thus
limiting potentially large sources of error in predicting user behavior that would
be likely in a far more general setting. Prior work modeling user commands
shows very high false positive rates with moderate true positive rates. User
search behavior modeling produces better accuracy.

We presented a modeling approach that aims to capture the intent of a user
more accurately based on the insight that a masquerader is likely to perform
untargeted and widespread search. Recall that we conjecture that user search
behavior is a strong indicator of a user’s true identity. We modeled search behav-
ior of the legitimate user using a set of 7 features, and detected anomalies that
deviate from that normal search behavior. With the use of the RUU dataset, a
more suitable dataset for the masquerade detection problem, we achieved the
best results reported in literature to date: 100% masquerade detection rate with
only 0.13% of false positives. Other researchers are encouraged to use the data
set we have made publicly available for download [1].

In an operational monitoring system, the use of a small set of features limits
the system resources needed by the detector, and allows for real-time masquerade



Modeling User Search-Behavior for Masquerade Detection 19

attack detection. Furthermore, it can be easily deployed as profiling in a low-
dimensional space reduces the amount of sampling required: An average of 7 days
of training data was enough to train the models and build effective detectors.

In our ongoing work, we are exploring other features for modeling that could
improve our results and extend them to other masquerade attack scenarios. The
models can be refined by adding more features related to search, including search
query contents, parameters used, and directory traversals etc.. Other potential
features to model include the use of bookmarks and most recently opened doc-
uments by masquerade attackers as a starting point for their search could also
be used. The models reported here are primarily volumetric statistics charac-
terizing search volume and velocity. We can also update the models in order to
compensate for any user behavior changes. We will explore ways of improving
the models so that they reflect a user’s unique behavior that should be distin-
guishable from other legitimate user’s behaviors, and not just from the behavior
of masqueraders.

References

1. RUU dataset: http://www1.cs.columbia.edu/ids/ruu/data/.
2. J. Attenberg, S. Pandey, and T. Suel. Modeling and predicting user behavior in

sponsored search. In KDD ’09: Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 1067–1076, New
York, NY, USA, 2009. ACM.

3. R. Baeza-Yates, C. Hurtado, M. Mendoza, and G. Dupret. Modeling user search
behavior. In LA-WEB ’05: Proceedings of the Third Latin American Web Congress,
pages 242–251. IEEE Computer Society, 2005.

4. B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo. Baiting inside at-
tackers using decoy documents. In SecureComm’09: Proceedings of the 5th Inter-
national ICST Conference on Security and Privacy in Communication Networks,
2009.

5. C.-C. Chang and C.-J. Lin. Libsvm: http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
6. C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines.

http://www.csie.ntu.edu.tw/ cjlin/papers/libsvm.pdf, 2001.
7. S. E. Coull, J. Branch, B. Szymanski, and E. Breimer. Intrusion detection: A

bioinformatics approach. In Proceedings of the 19th Annual Computer Security
Applications Conference, pages 24–33, 2001.

8. S. E. Coull and B. K. Szymanski. Sequence alignment for masquerade detection.
Computational Statistics and Data Analysis, 52(8):4116–4131, 2008.

9. B. D. Davison and H. Hirsh. Toward an adaptive command line interface. In Pro-
ceedings of the Seventh International Conference on Human-Computer Interaction
(HCI97). Elsevier Science Publishers, 1997.

10. B. D. Davison and H. Hirsh. Predicting sequences of user actions. In Working Notes
of the Joint Workshop on Predicting the Future: AI Approaches to Time Series
Analysis, 15th National Conference on Artificial Intelligence/15th International
Conference on Machine Learning, pages 5–12. AAAI Press, 1998.

11. T. Lane and C. E. Brodley. Sequence matching and learning in anomaly detection
for computer security. In In AAAI Workshop: AI Approaches to Fraud Detection
and Risk Management, pages 43–49. AAAI Press, 1997.



20 Ben Salem, Hershkop, and Stolfo

12. M. A. Maloof and G. D. Stephens. elicit: A system for detecting insiders who
violate need-to-know. In RAID, pages 146–166, 2007.

13. R. A. Maxion and T. N. Townsend. Masquerade detection using truncated com-
mand lines. In DSN ’02: Proceedings of the 2002 International Conference on
Dependable Systems and Networks, pages 219–228. IEEE Computer Society, 2002.

14. R. A. Maxion and T. N. Townsend. Masquerade detection augmented with error
analysis. IEEE Transactions on Reliability, 53(1):124–147, 2004.

15. M. O’Brien and M. T. Keane. Modeling user behavior using a search-engine. In IUI
’07: Proceedings of the 12th international conference on Intelligent user interfaces,
pages 357–360, New York, NY, USA, 2007. ACM.

16. M. Oka, Y. Oyama, H. Abe, and K. Kato. Anomaly detection using layered net-
works based on eigen co-occurrence matrix. In Proceedings of the 7th International
Symposium on Recent Advances in Intrusion Detection, 2004.

17. M. Oka, Y. Oyama, and K. Kato. Eigen co-occurrence matrix method for mas-
querade detection. In Publications of the Japan Society for Software Science and
Technology, 2004.

18. B Schölkopf, J. C. Platt, J. Shawe-taylor, A. J. Smola, and R. C. Williamson.
Estimating the support of a high-dimensional distribution. Neural Computation,
13(7), 2001.

19. M. Schonlau. Schonlau dataset: http://www.schonlau.net.
20. M. Schonlau, W. Dumouchel, W. Ju, A. F. Karr, M. Theus, and Y. Vardi. Com-

puter intrusion: Detecting masquerades. Statistical Science, 16:58–74, 2001.
21. Nadeem Ahmed Syed, Huan Liu, Syed Huan, Liu Kah, and Kay Sung. Handling

concept drifts in incremental learning with support vector machines. In In Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-99, pages 317–321. ACM Press, 1999.

22. Vladimir N. Vapnik. The Nature of Statistical Learning Theory (Information Sci-
ence and Statistics). Springer, 1999.

23. K. Wang and S. J. Stolfo. One-class training for masquerade detection. In Pro-
ceedings of the 3rd IEEE Workshop on Data Mining for Computer Security, 2003.

24. K. H. Yung. Using self-consistent näıve bayes to detect masqueraders. In
PAKDD’08: Proceedings of the 8th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pages 329–340, 2004.


