5 research outputs found

    Exploiting statically schedulable regions in dataflow programs

    Get PDF
    International audienceDataflow descriptions have been used in a wide range of Digital Signal Processing (DSP) applications, such as multi-media processing, and wireless communications. Among various forms of dataflow modeling, Synchronous Dataflow (SDF) is geared towards static scheduling of computational modules, which improves system performance and predictability. However, many DSP applications do not fully conform to the restrictions of SDF modeling. More general dataflow models, such as CAL [1], have been developed to describe dynamically-structured DSP applications. Such generalized models can express dynamically changing functionality, but lose the powerful static scheduling capabilities provided by SDF. This paper focuses on detection of SDF-like regions in dynamic dataflow descriptions -- in particular, in the generalized specification framework of CAL. This is an important step for applying static scheduling techniques within a dynamic dataflow framework. Our techniques combine the advantages of different dataflow languages and tools, including CAL [1], DIF [2] and CAL2C [3]. The techniques are demonstrated on the IDCT module of MPEG Reconfigurable Video Coding (RVC)

    Adaptive streaming applications : analysis and implementation models

    Get PDF
    This thesis presents a highly automated design framework, called DaedalusRT, and several novel techniques. As the foundation of the DaedalusRT design framework, two types of dataflow Models-of-Computation (MoC) are used, one as timing analysis model and another one as the implementation model. The timing analysis model is used to formally reason about timing behavior of an application. In the context of DaedalusRT, the Mode-Aware Data Flow (MADF) MoC has been developed as the timing analysis model for adaptive streaming applications using different static modes. A novel mode transition protocol is devised to allow efficient reasoning of timing behavior during mode transitions. Based on the transition protocol, a hard real-time scheduling approach is proposed. On the other hand, the implementation model is used for efficient code generation of parallel computation, communication, and synchronization. In this thesis, the Parameterized Polyhedral Process Network (P3N) MoC has been developed to model adaptive streaming applications with parameter reconfiguration. An approach to verify the functional property of the P3N MoC has been devised. Finally, implementation of the P3N MoC on a MPSoC platform has shown that run-time performance penalty due to parameter reconfiguration is negligible.Technology Foundation STWComputer Systems, Imagery and Medi

    Exploiting Multi-Level Parallelism in Streaming Applications for Heterogeneous Platforms with GPUs

    Get PDF
    Heterogeneous computing platforms support the traditional types of parallelism, such as e.g., instruction-level, data, task, and pipeline parallelism, and provide the opportunity to exploit a combination of different types of parallelism at different platform levels. The architectural diversity of platform components makes tapping into the platform potential a challenging programming task. This thesis makes an important step in this direction by introducing a novel methodology for automatic generation of structured, multi-level parallel programs from sequential applications. We introduce a novel hierarchical intermediate program representation (HiPRDG) that captures the notions of structure and hierarchy in the polyhedral model used for compile-time program transformation and code generation. Using the HiPRDG as the starting point, we present a novel method for generation of multi-level programs (MLPs) featuring different types of parallelism, such as task, data, and pipeline parallelism. Moreover, we introduce concepts and techniques for data parallelism identification, GPU code generation, and asynchronous data-driven execution on heterogeneous platforms with efficient overlapping of host-accelerator communication and computation. By enabling the modular, hybrid parallelization of program model components via HiPRDG, this thesis opens the door for highly efficient tailor-made parallel program generation and auto-tuning for next generations of multi-level heterogeneous platforms with diverse accelerators.Computer Systems, Imagery and Medi
    corecore