397 research outputs found

    SIS epidemic propagation on hypergraphs

    Get PDF
    Mathematical modeling of epidemic propagation on networks is extended to hypergraphs in order to account for both the community structure and the nonlinear dependence of the infection pressure on the number of infected neighbours. The exact master equations of the propagation process are derived for an arbitrary hypergraph given by its incidence matrix. Based on these, moment closure approximation and mean-field models are introduced and compared to individual-based stochastic simulations. The simulation algorithm, developed for networks, is extended to hypergraphs. The effects of hypergraph structure and the model parameters are investigated via individual-based simulation results

    Alignment and integration of complex networks by hypergraph-based spectral clustering

    Get PDF
    Complex networks possess a rich, multi-scale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.Comment: 16 pages, 5 figures; revised version with minor corrections and figures printed in two-column format for better readability; algorithm implementation and supplementary information available at Google code at http://schype.googlecode.co

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    A framework to generate hypergraphs with community structure

    Full text link
    In recent years hypergraphs have emerged as a powerful tool to study systems with multi-body interactions which cannot be trivially reduced to pairs. While highly structured methods to generate synthetic data have proved fundamental for the standardized evaluation of algorithms and the statistical study of real-world networked data, these are scarcely available in the context of hypergraphs. Here we propose a flexible and efficient framework for the generation of hypergraphs with many nodes and large hyperedges, which allows specifying general community structures and tune different local statistics. We illustrate how to use our model to sample synthetic data with desired features (assortative or disassortative communities, mixed or hard community assignments, etc.), analyze community detection algorithms, and generate hypergraphs structurally similar to real-world data. Overcoming previous limitations on the generation of synthetic hypergraphs, our work constitutes a substantial advancement in the statistical modeling of higher-order systems.Comment: 18 pages, 8 figures, revised versio

    How Transitive Are Real-World Group Interactions? -- Measurement and Reproduction

    Full text link
    Many real-world interactions (e.g., researcher collaborations and email communication) occur among multiple entities. These group interactions are naturally modeled as hypergraphs. In graphs, transitivity is helpful to understand the connections between node pairs sharing a neighbor, and it has extensive applications in various domains. Hypergraphs, an extension of graphs, are designed to represent group relations. However, to the best of our knowledge, there has been no examination regarding the transitivity of real-world group interactions. In this work, we investigate the transitivity of group interactions in real-world hypergraphs. We first suggest intuitive axioms as necessary characteristics of hypergraph transitivity measures. Then, we propose a principled hypergraph transitivity measure HyperTrans, which satisfies all the proposed axioms, with a fast computation algorithm Fast-HyperTrans. After that, we analyze the transitivity patterns in real-world hypergraphs distinguished from those in random hypergraphs. Lastly, we propose a scalable hypergraph generator THera. It reproduces the observed transitivity patterns by leveraging community structures, which are pervasive in real-world hypergraphs. Our code and datasets are available at https://github.com/kswoo97/hypertrans.Comment: To be published in KDD 2023. 12 pages, 7 figures, and 11 table

    Encapsulation structure and dynamics in hypergraphs

    Get PDF
    Hypergraphs have emerged as a powerful modeling framework to represent systems with multiway interactions, that is systems where interactions may involve an arbitrary number of agents. Here we explore the properties of real-world hypergraphs, focusing on the encapsulation of their hyperedges, which is the extent that smaller hyperedges are subsets of larger hyperedges. Building on the concept of line graphs, our measures quantify the relations existing between hyperedges of different sizes and, as a byproduct, the compatibility of the data with a simplicial complex representation–whose encapsulation would be maximum. We then turn to the impact of the observed structural patterns on diffusive dynamics, focusing on a variant of threshold models, called encapsulation dynamics, and demonstrate that non-random patterns can accelerate the spreading in the system
    corecore