148 research outputs found

    ์†Œ์…œ ๋„คํŠธ์›Œํฌ์™€ ์ด์ปค๋จธ์Šค ํ”Œ๋žซํผ์—์„œ์˜ ์ž ์žฌ ๋„คํŠธ์›Œํฌ ๋งˆ์ด๋‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2023. 2. ๊ถŒํƒœ๊ฒฝ.์›น ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค์˜ ํญ๋ฐœ์ ์ธ ๋ฐœ๋‹ฌ๋กœ ์‚ฌ์šฉ์ž๋“ค์€ ์˜จ๋ผ์ธ ์ƒ์—์„œ ํญ๋„“๊ฒŒ ์—ฐ๊ฒฐ๋˜๊ณ  ์žˆ๋‹ค. ์˜จ๋ผ์ธ ํ”Œ๋žซํผ ์ƒ์—์„œ, ์‚ฌ์šฉ์ž๋“ค์€ ์„œ๋กœ์—๊ฒŒ ์˜ํ–ฅ์„ ์ฃผ๊ณ ๋ฐ›์œผ๋ฉฐ ์˜์‚ฌ ๊ฒฐ์ •์— ๊ทธ๋“ค์˜ ๊ฒฝํ—˜๊ณผ ์˜๊ฒฌ์„ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋Œ€ํ‘œ์ ์ธ ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์ธ ์†Œ์…œ ๋„คํŠธ์›Œํฌ ์„œ๋น„์Šค์™€ ์ด์ปค๋จธ์Šค ํ”Œ๋žซํผ์—์„œ์˜ ์‚ฌ์šฉ์ž ํ–‰๋™์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์—์„œ์˜ ์‚ฌ์šฉ์ž ํ–‰๋™์€ ์‚ฌ์šฉ์ž์™€ ํ”Œ๋žซํผ ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์‚ฌ์šฉ์ž์˜ ๊ตฌ๋งค๋Š” ์‚ฌ์šฉ์ž์™€ ์ƒํ’ˆ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ, ์‚ฌ์šฉ์ž์˜ ์ฒดํฌ์ธ์€ ์‚ฌ์šฉ์ž์™€ ์žฅ์†Œ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ ๋‚˜ํƒ€๋‚ด์ง„๋‹ค. ์—ฌ๊ธฐ์— ํ–‰๋™์˜ ์‹œ๊ฐ„๊ณผ ๋ ˆ์ดํŒ…, ํƒœ๊ทธ ๋“ฑ์˜ ์ •๋ณด๊ฐ€ ํฌํ•จ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‘ ํ”Œ๋žซํผ์—์„œ ์ •์˜๋œ ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ๊ทธ๋ž˜ํ”„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ž ์žฌ ๋„คํŠธ์›Œํฌ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์œ„์น˜ ๊ธฐ๋ฐ˜์˜ ์†Œ์…œ ๋„คํŠธ์›Œํฌ ์„œ๋น„์Šค์˜ ๊ฒฝ์šฐ ํŠน์ • ์žฅ์†Œ์— ๋ฐฉ๋ฌธํ•˜๋Š” ์ฒดํฌ์ธ ํ˜•์‹์œผ๋กœ ๋งŽ์€ ํฌ์ŠคํŠธ๊ฐ€ ๋งŒ๋“ค์–ด์ง€๋Š”๋ฐ, ์‚ฌ์šฉ์ž์˜ ์žฅ์†Œ ๋ฐฉ๋ฌธ์€ ์‚ฌ์šฉ์ž ๊ฐ„์— ์‚ฌ์ „์— ์กด์žฌํ•˜๋Š” ์นœ๊ตฌ ๊ด€๊ณ„์— ์˜ํ•ด ์˜ํ–ฅ์„ ํฌ๊ฒŒ ๋ฐ›๋Š”๋‹ค. ์‚ฌ์šฉ์ž ํ™œ๋™ ๋„คํŠธ์›Œํฌ์˜ ์ €๋ณ€์— ์ž ์žฌ๋œ ์‚ฌ์šฉ์ž ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์€ ํ™œ๋™ ์˜ˆ์ธก์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์ง€๋„ํ•™์Šต ๊ธฐ๋ฐ˜์œผ๋กœ ํ™œ๋™ ๋„คํŠธ์›Œํฌ๋กœ๋ถ€ํ„ฐ ์‚ฌ์šฉ์ž ๊ฐ„ ์‚ฌํšŒ์  ๊ด€๊ณ„๋ฅผ ์ถ”์ถœํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด์— ์—ฐ๊ตฌ๋˜์—ˆ๋˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋‘ ์‚ฌ์šฉ์ž๊ฐ€ ๋™์‹œ์— ๋ฐฉ๋ฌธํ•˜๋Š” ํ–‰์œ„์ธ co-visitation์„ ์ค‘์ ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์‚ฌ์šฉ์ž ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ฑฐ๋‚˜, ๋„คํŠธ์›Œํฌ ์ž„๋ฒ ๋”ฉ ๋˜๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‘œํ˜„ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์ฃผ๊ธฐ์ ์ธ ๋ฐฉ๋ฌธ์ด๋‚˜ ์žฅ๊ฑฐ๋ฆฌ ์ด๋™ ๋“ฑ์œผ๋กœ ๋Œ€ํ‘œ๋˜๋Š” ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ํŒจํ„ด์„ ์ž˜ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํ–‰๋™ ํŒจํ„ด์„ ๋” ์ž˜ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด, ANES๋Š” ์‚ฌ์šฉ์ž ์ปจํ…์ŠคํŠธ ๋‚ด์—์„œ ์‚ฌ์šฉ์ž์™€ ๊ด€์‹ฌ ์ง€์ (POI) ๊ฐ„์˜ ์ธก๋ฉด(Aspect) ์ง€ํ–ฅ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•œ๋‹ค. ANES๋Š” User-POI ์ด๋ถ„ ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ์—์„œ ์‚ฌ์šฉ์ž์˜ ํ–‰๋™์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ธก๋ฉด์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ๊ฐ์˜ ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ํ–‰๋™ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ์ตœ์ดˆ์˜ ๋น„์ง€๋„ํ•™์Šต ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ์‹ค์ œ LBSN ๋ฐ์ดํ„ฐ์—์„œ ์ˆ˜ํ–‰๋œ ๊ด‘๋ฒ”์œ„ํ•œ ์‹คํ—˜์—์„œ, ANES๋Š” ๊ธฐ์กด์— ์ œ์•ˆ๋˜์—ˆ๋˜ ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ์œ„์น˜ ๊ธฐ๋ฐ˜ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ, ์ด์ปค๋จธ์Šค์˜ ๋ฆฌ๋ทฐ ์‹œ์Šคํ…œ์—์„œ๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ๋Šฅ๋™์ ์ธ ํŒ”๋กœ์šฐ/ํŒ”๋กœ์ž‰ ๋“ฑ์˜ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•˜์ง€ ์•Š๊ณ ๋„ ํ”Œ๋žซํผ์— ์˜ํ•ด ์„œ๋กœ์˜ ์ •๋ณด๋ฅผ ์ฃผ๊ณ ๋ฐ›๊ณ  ์˜ํ–ฅ๋ ฅ์„ ํ–‰์‚ฌํ•˜๊ฒŒ ๋œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์‚ฌ์šฉ์ž๋“ค์˜ ํ–‰๋™ ํŠน์„ฑ์€ ๋ฆฌ๋ทฐ ์ŠคํŒธ์— ์˜ํ•ด ์‰ฝ๊ฒŒ ์•…์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฆฌ๋ทฐ ์ŠคํŒธ์€ ์‹ค์ œ ์‚ฌ์šฉ์ž์˜ ์˜๊ฒฌ์„ ์ˆจ๊ธฐ๊ณ  ํ‰์ ์„ ์กฐ์ž‘ํ•˜์—ฌ ์ž˜๋ชป๋œ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ๋‚˜๋Š” ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ์ž ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์—์„œ ์‚ฌ์šฉ์ž ๊ฐ„ ์‚ฌ์ „ ๊ณต๋ชจ์„ฑ(Collusiveness)์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ฐพ๊ณ , ์ด๋ฅผ ์ŠคํŒธ ํƒ์ง€์— ํ™œ์šฉํ•œ ๋ฐฉ๋ฒ•์ธ SC-Com์„ ์ œ์•ˆํ•œ๋‹ค. SC-Com์€ ํ–‰๋™์˜ ๊ณต๋ชจ์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ์‚ฌ์šฉ์ž ๊ฐ„ ๊ณต๋ชจ ์ ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ํ•ด๋‹น ์ ์ˆ˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ „์ฒด ์‚ฌ์šฉ์ž๋ฅผ ์œ ์‚ฌํ•œ ์‚ฌ์šฉ์ž๋“ค์˜ ์ปค๋ฎค๋‹ˆํ‹ฐ๋กœ ๋ถ„๋ฅ˜ํ•œ๋‹ค. ๊ทธ ํ›„ ์ŠคํŒธ ์œ ์ €์™€ ์ผ๋ฐ˜ ์œ ์ €๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋ฐ์— ์ค‘์š”ํ•œ ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜์—ฌ ๊ฐ๋… ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. SC-Com์€ ๊ณต๋ชจ์„ฑ์„ ๊ฐ–๋Š” ์ŠคํŒธ ์œ ์ €์˜ ์ง‘ํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ํƒ์ง€ํ•œ๋‹ค. ์‹ค์ œ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•œ ์‹คํ—˜์—์„œ, SC-Com์€ ๊ธฐ์กด ๋…ผ๋ฌธ๋“ค ๋Œ€๋น„ ์ŠคํŒธ ํƒ์ง€์— ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์œ„ ๋…ผ๋ฌธ์—์„œ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์—ฐ๊ตฌ๋œ ์•”์‹œ์  ์—ฐ๊ฒฐ๋ง ํƒ์ง€ ๋ชจ๋ธ์€ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋„ ์‚ฌ์ „์— ์—ฐ๊ฒฐ๋˜์—ˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ์‚ฌ์šฉ์ž๋“ค์„ ์˜ˆ์ธกํ•˜๋ฏ€๋กœ, ์‹ค์‹œ๊ฐ„ ์œ„์น˜ ๋ฐ์ดํ„ฐ๋‚˜, ์•ฑ ์‚ฌ์šฉ ๋ฐ์ดํ„ฐ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์—์„œ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์—ฌ ๊ด‘๊ณ  ์ถ”์ฒœ ์‹œ์Šคํ…œ์ด๋‚˜, ์•…์„ฑ ์œ ์ € ํƒ์ง€ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.Following the exploding usage on online services, people are connected with each other more broadly and widely. In online platforms, people influence each other, and have tendency to reflect their opinions in decision-making. Social Network Services (SNSs) and E-commerce are typical example of online platforms. User behaviors in online platforms can be defined as relation between user and platform components. A user's purchase is a relationship between a user and a product, and a user's check-in is a relationship between a user and a place. Here, information such as action time, rating, tag, etc. may be included. In many studies, platform user behavior is represented in graph form. At this time, the elements constituting the nodes of the graph are composed of objects such as users and products and places within the platform, and the interaction between the platform elements and the user can be expressed as two nodes being connected. In this study, I present studies to identify potential networks that affect the user's behavior graph defined on the two platforms. In ANES, I focus on representation learning for social link inference based on user trajectory data. While traditional methods predict relations between users by considering hand-crafted features, recent studies first perform representation learning using network/node embedding or graph neural networks (GNNs) for downstream tasks such as node classification and link prediction. However, those approaches fail to capture behavioral patterns of individuals ingrained in periodical visits or long-distance movements. To better learn behavioral patterns, this paper proposes a novel scheme called ANES (Aspect-oriented Network Embedding for Social link inference). ANES learns aspect-oriented relations between users and Point-of-Interests (POIs) within their contexts. ANES is the first approach that extracts the complex behavioral pattern of users from both trajectory data and the structure of User-POI bipartite graphs. Extensive experiments on several real-world datasets show that ANES outperforms state-of-the-art baselines. In contrast to active social networks, people are connected to other users regardless of their intentions in some platforms, such as online shopping websites and restaurant review sites. They do not have any information about each other in advance, and they only have a common point which is that they have visited or have planned to visit same place or purchase a product. Interestingly, users have tendency to be influenced by the review data on their purchase intentions. Unfortunately, this instinct is easily exploited by opinion spammers. In SC-Com, I focus on opinion spam detection in online shopping services. In many cases, my decision-making process is closely related to online reviews. However, there have been threats of opinion spams by hired reviewers increasingly, which aim to mislead potential customers by hiding genuine consumers opinions. Opinion spams should be filed up collectively to falsify true information. Fortunately, I propose the way to spot the possibility to detect them from their collusiveness. In this paper, I propose SC-Com, an optimized collusive community detection framework. It constructs the graph of reviewers from the collusiveness of behavior and divides a graph by communities based on their mutual suspiciousness. After that, I extract community-based and temporal abnormality features which are critical to discriminate spammers from other genuine users. I show that my method detects collusive opinion spam reviewers effectively and precisely from their collective behavioral patterns. In the real-world dataset, my approach showed prominent performance while only considering primary data such as time and ratings. These implicit network inference models studied on various data in this thesis predicts users who are likely to be pre-connected to unlabeled data, so it is expected to contribute to areas such as advertising recommendation systems and malicious user detection by providing useful information.Chapter 1 Introduction 1 Chapter 2 Social link Inference in Location-based check-in data 5 2.1 Background 5 2.2 Related Work 12 2.3 Location-based Social Network Service Data 15 2.4 Aspect-wise Graph Decomposition 18 2.5 Aspect-wise Graph learning 19 2.6 Inferring Social Relation from User Representation 21 2.7 Performance Analysis 23 2.8 Discussion and Implications 26 2.9 Summary 34 Chapter 3 Detecting collusiveness from reviews in Online platforms and its application 35 3.1 Background 35 3.2 Related Work 39 3.3 Online Review Data 43 3.4 Collusive Graph Projection 44 3.5 Reviewer Community Detection 47 3.6 Review Community feature extraction and spammer detection 51 3.7 Performance Analysis 53 3.8 Discussion and Implications 55 3.9 Summary 62 Chapter 4 Conclusion 63๋ฐ•

    Harnessing the power of the general public for crowdsourced business intelligence: a survey

    Get PDF
    International audienceCrowdsourced business intelligence (CrowdBI), which leverages the crowdsourced user-generated data to extract useful knowledge about business and create marketing intelligence to excel in the business environment, has become a surging research topic in recent years. Compared with the traditional business intelligence that is based on the firm-owned data and survey data, CrowdBI faces numerous unique issues, such as customer behavior analysis, brand tracking, and product improvement, demand forecasting and trend analysis, competitive intelligence, business popularity analysis and site recommendation, and urban commercial analysis. This paper first characterizes the concept model and unique features and presents a generic framework for CrowdBI. It also investigates novel application areas as well as the key challenges and techniques of CrowdBI. Furthermore, we make discussions about the future research directions of CrowdBI

    Unsupervised user behavior representation for fraud review detection with cold-start problem

    Full text link
    ยฉ Springer Nature Switzerland AG 2019. Detecting fraud review is becoming extremely important in order to provide reliable information in cyberspace, in which, however, handling cold-start problem is a critical and urgent challenge since the case of cold-start fraud review rarely provides sufficient information for further assessing its authenticity. Existing work on detecting cold-start cases relies on the limited contents of the review posted by the user and a traditional classifier to make the decision. However, simply modeling review is not reliable since reviews can be easily manipulated. Also, it is hard to obtain high-quality labeled data for training the classifier. In this paper, we tackle cold-start problems by (1) using a userโ€™s behavior representation rather than review contents to measure authenticity, which further (2) consider user social relations with other existing users when posting reviews. The method is completely (3) unsupervised. Comprehensive experiments on Yelp data sets demonstrate our method significantly outperforms the state-of-the-art methods

    Signed Latent Factors for Spamming Activity Detection

    Full text link
    Due to the increasing trend of performing spamming activities (e.g., Web spam, deceptive reviews, fake followers, etc.) on various online platforms to gain undeserved benefits, spam detection has emerged as a hot research issue. Previous attempts to combat spam mainly employ features related to metadata, user behaviors, or relational ties. These works have made considerable progress in understanding and filtering spamming campaigns. However, this problem remains far from fully solved. Almost all the proposed features focus on a limited number of observed attributes or explainable phenomena, making it difficult for existing methods to achieve further improvement. To broaden the vision about solving the spam problem and address long-standing challenges (class imbalance and graph incompleteness) in the spam detection area, we propose a new attempt of utilizing signed latent factors to filter fraudulent activities. The spam-contaminated relational datasets of multiple online applications in this scenario are interpreted by the unified signed network. Two competitive and highly dissimilar algorithms of latent factors mining (LFM) models are designed based on multi-relational likelihoods estimation (LFM-MRLE) and signed pairwise ranking (LFM-SPR), respectively. We then explore how to apply the mined latent factors to spam detection tasks. Experiments on real-world datasets of different kinds of Web applications (social media and Web forum) indicate that LFM models outperform state-of-the-art baselines in detecting spamming activities. By specifically manipulating experimental data, the effectiveness of our methods in dealing with incomplete and imbalanced challenges is valid

    An Inferable Representation Learning for Fraud Review Detection with Cold-start Problem

    Full text link
    ยฉ 2019 IEEE. Fraud review significantly damages the business reputation and also customers' trust to certain products. It has become a serious problem existing on the current social media. Various efforts have been put in to tackle such problems. However, in the case of cold-start where a review is posted by a new user who just pops up on the social media, common fraud detection methods may fail because most of them are heavily depended on the information about the user's historical behavior and its social relation to other users, yet such information is lacking in the cold-start case. This paper presents a novel Joint-bEhavior-and-Social-relaTion-infERable (JESTER) embedding method to leverage the user reviewing behavior and social relations for cold-start fraud review detection. JESTER embeds the deep characteristics of existing user behavior and social relations of users and items in an inferable user-item-review-rating representation space where the representation of a new user can be efficiently inferred by a closed-form solution and reflects the user's most probable behavior and social relations. Thus, a cold-start fraud review can be effectively detected accordingly. Our experiments show JESTER (i) performs significantly better in detecting fraud reviews on four real-life social media data sets, and (ii) effectively infers new user representation in the cold-start problem, compared to three state-of-the-art and two baseline competitors

    Fake Review Detection using Data Mining

    Get PDF
    Online spam reviews are deceptive evaluations of products and services. They are often carried out as a deliberate manipulation strategy to deceive the readers. Recognizing such reviews is an important but challenging problem. In this work, I try to solve this problem by using different data mining techniques. I explore the strength and weakness of those data mining techniques in detecting fake review. I start with different supervised techniques such as Support Vector Ma- chine (SVM), Multinomial Naive Bayes (MNB), and Multilayer Perceptron. The results attest that all the above mentioned supervised techniques can successfully detect fake review with more than 86% accuracy. Then, I work on a semi-supervised technique which reduces the dimension- ality of the input features vector but offers similar performance to existing approaches. I use a combination of topic modeling and SVM for the implementation of the semi-supervised tech- nique. I also compare the results with other approaches that consider all the words of a dataset as input features. I found that topic words are enough as input features to get similar accuracy compared to other approaches where researchers consider all the words as input features. At the end, I propose an unsupervised learning approach named as Words Basket Analysis for fake re- view detection. I utilize five Amazon products review dataset for an experiment and report the performance of the proposed on these datasets
    • โ€ฆ
    corecore