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Abstract 

Mining Latent Networks on Social Network and 

E-Commerce Platforms 

Hyungho Byun 

Department of Computer Science & Engineering 

The Graduate School 

Seoul National University 

Following the exploding usage on online services, people are connected 

with each other more broadly and widely. In online platforms, people 

influence each other, and have tendency to reflect their opinions in 

decision-making. Social Network Services (SNSs) and E-commerce are 

typical example of online platforms.  

User behaviors in online platforms can be defined as relation between 

user and platform components. A user's purchase is a relationship between 

a user and a product, and a user's check-in is a relationship between a user 

and a place. Here, information such as action time, rating, tag, etc. may be 

included. In many studies, platform user behavior is represented in graph 

form. At this time, the elements constituting the nodes of the graph are 

composed of objects such as users and products and places within the 

platform, and the interaction between the platform elements and the user 

can be expressed as two nodes being connected. 
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In this study, I present studies to identify potential networks that affect the 

user's behavior graph defined on the two platforms. 

In ANES, I focus on representation learning for social link inference based 

on user trajectory data. While traditional methods predict relations between 

users by considering hand-crafted features, recent studies first perform 

representation learning using network/node embedding or graph neural 

networks (GNNs) for downstream tasks such as node classification and link 

prediction. However, those approaches fail to capture behavioral patterns of 

individuals ingrained in periodical visits or long-distance movements. To 

better learn behavioral patterns, this paper proposes a novel scheme called 

ANES (Aspect-oriented Network Embedding for Social link inference). ANES 

learns aspect-oriented relations between users and Point-of-Interests (POIs) 

within their contexts. ANES is the first approach that extracts the complex 

behavioral pattern of users from both trajectory data and the structure of 

User-POI bipartite graphs. Extensive experiments on several real-world 

datasets show that ANES outperforms state-of-the-art baselines.  

In contrast to active social networks, people are connected to other users 

regardless of their intentions in some platforms, such as online shopping 

websites and restaurant review sites. They do not have any information 

about each other in advance, and they only have a common point which is 

that they have visited or have planned to visit same place or purchase a 

product. Interestingly, users have tendency to be influenced by the review 

data on their purchase intentions.  

Unfortunately, this instinct is easily exploited by opinion spammers. In SC-

Com, I focus on opinion spam detection in online shopping services. In many 
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cases, my decision-making process is closely related to online reviews. 

However, there have been threats of opinion spams by hired reviewers 

increasingly, which aim to mislead potential customers by hiding genuine 

consumers’ opinions. Opinion spams should be filed up collectively to falsify 

true information. Fortunately, I propose the way to spot the possibility to 

detect them from their collusiveness. In this paper, I propose SC-Com, an 

optimized collusive community detection framework. It constructs the graph 

of reviewers from the collusiveness of behavior and divides a graph by 

communities based on their mutual suspiciousness. After that, I extract 

community-based and temporal abnormality features which are critical to 

discriminate spammers from other genuine users. I show that my method 

detects collusive opinion spam reviewers effectively and precisely from their 

collective behavioral patterns. In the real-world dataset, my approach 

showed prominent performance while only considering primary data such as 

time and ratings. 

These implicit network inference models studied on various data in this 

thesis predicts users who are likely to be pre-connected to unlabeled data, 

so it is expected to contribute to areas such as advertising recommendation 

systems and malicious user detection by providing useful information. 

Keywords: Social network analysis, Spam detection, Graph learning, 

Location-based social networks, Social link inference 

Student Number: 2016-21210 
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Chapter 1 Introduction  

Following the exploding usage on online services, people are connected 

with each other more broadly and widely. In online platforms, people 

influence each other, and have tendency to reflect their opinions in 

decision-making. That is the reason why many researches has been 

proposed in a category of social recommendation [57]. Social Network 

Services (SNSs) and E-commerce are typical example of online platforms. 

Analyzing user behaviors on those platforms has gained expansive 

research attention. By utilizing social relationships, I can predict person’s 

behaviors [50], recommend purchases of products [38, 47], and provide 

customized advertising services [43]. Those applications furnish new 

marketing and service opportunities to both service providers and users. 

User behaviors in online platforms can be defined as relation between 

user and platform components. A user's purchase is a relationship between 

a user and a product, and a user's check-in is a relationship between a user 

and a place. Here, information such as action time, rating, tag, etc. may be 

included. In many studies, platform user behavior is represented in graph 

form. At this time, the elements constituting the nodes of the graph are 

composed of objects such as users and products and places within the 

platform, and the interaction between the platform elements and the user 

can be expressed as two nodes being connected. 

In this study, I present studies to identify potential networks that affect the 

user's behavior graph defined on the two platforms. Before introducing 

each study, I explain the different characteristics of two platforms, by 
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focusing on the connection of each platform. The connection between users 

in two platforms can be regarded as two types according to the subject of 

the relationship: the active social networks and passive social networks.  

If users determine who to connect, it is an active social network. 

Following/follower relation and subscription can be examples of active 

social network. In active social network, users relate by their own decision. 

This relation can be found in general SNSs. In this paper, I only consider 

reciprocal link in SNS, to focus on relation with influence both sides.  

In active social networks, the main principle of why people connect is 

homophily. According to [58], relation between people with similar 

characteristics occur more often than people with dissimilar characteristics. 

Those insight become a theoretical underlying of graph neural networks 

(GNNs). In this paper, I consider location-based social networks (LBSNs) 

as examples of active social networks and find the way to infer social 

relation between users. In the case of a social network service, many posts 

are created in the form of a check-in visit to a specific place, and a user's 

visit to a place is greatly influenced by a pre-existing friend relationship 

between users. Identifying the relationship between users latent in the user 

activity network can be helpful in predicting activity. 

Previous approaches [12,5] utilized homophily as the insight that users 

are likely to be connected on LBSNs when they actually meet in real life. It 

is called co-visitation. However, I proved that homophily can be applied to 

the similarity of behavioral patterns, which is beyond simple co-visitation. 

Even though users are not actually connected simultaneously, I 

hypothesized that similar behavioral patterns are likely to have a social link.  
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I propose a novel method called ANES (Aspect-oriented Network 

Embedding for Social link inference), a representation learning method 

customized for unsupervised learning scenarios. First, I regard trajectory 

data as a directed bipartite graph of users and POIs. Users and POIs are 

connected if there is a trajectory record between them. Features of an edge 

between users and POIs are defined by the aspect of each trajectory from 

additional information such as time slots, geographic information, and activity 

categories. I decompose the graph into aspect-wise bipartite subgraphs, 

each of which is learned separately by a context-aware embedding scheme.  

One main point of the context-aware embedding scheme is that if a user 

visits a POI in a certain context, they should be close to each other in the 

embedding space by having a similarly transformed vector from their context. 

Different from previous approaches, which only focused on co-visitations of 

users, I learn the behavioral characteristics of users by considering contexts 

between users and POIs. First, user embedding is projected by each context 

to model the user’s behavioral representation. After that, I define a transition-

based relation between the projected user and the POI. In the context-aware 

embedding scheme, relations between users are modeled as a mixed form 

of projection and transition. Users’ complex behavioral patterns in various 

contexts can be learned in this method. Context-aware embedding can lead 

to accurate representation learning useful for inferring hidden social relations 

between users without explicit label information in advance. After that, I 

measure the probability of social relations by comparing a pair of user 

embedding by concatenating the aspect-wise user embedding together. 

ANES works well in the unsupervised condition by effectively defining loss 

function from the relation between users and POIs, to model complex 
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behavioral patterns of users upon various aspects. The detailed explanation 

of this work is in Chapter 2.  

In contrast to active social networks, people are connected to other users 

regardless of their intentions in e-commerce platforms, such as online 

shopping websites and restaurant review sites. They do not have any 

information about each other in advance, and they only have a common 

point which is that they have visited or have planned to visit same place or 

purchase a product. Interestingly, users have tendency to be influenced by 

the review data on their purchase intentions. However, this instinct of 

human has been exploited by malicious reviews. Some service operators 

provide users with material rewards such as free products, deliberately 

soliciting high-rating reviews, or mobilizing accounts rather than actual 

users to reduce the ratings of certain products. This act of calling review 

spamming is now very prevalent. By piling up overwhelmingly positive fake 

reviews, they induce more customers to visit.  

Paradoxically, spamming is generally based on collusion. To achieve the 

boost of the target rating in a short time, or to undermine the reputation of 

the competitor, multiple accounts must pile up reviews with the same 

polarity in a short time. To solve the spam detection problem, I focused on 

the above-mentioned public offering, identified the public offering 

relationship between users on the online shopping platform, and used it in 

research to find accounts used for actual spamming. 

I propose SC-Com, a robust spam detection method which can be used in 

many domains by only considering primary data such as time data and 

ratings. SC-Com has caught opinion spam reviewers effectively and 
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precisely in large-scale real-world data. It aims to extract communities of 

reviewers with their behavioral collusiveness and utilizes features from 

each community to supervised learning for detecting opinion spammers. 

First, I observe the importance of finding collusiveness in opinion spam, by 

constructing a projection graph of reviewers according to their behavioral 

similarities. Second, I propose the framework to divide whole users into 

closely related communities and discriminate each community by extracting 

features related to communities’ suspiciousness. Lastly, I prove that my 

approach can provide a reliable and robust solution with a high F1 score of 

0.93 in a real-world dataset.  

Chapter 2 describes ANES, an unsupervised learning-based approach 

that predicts connectivity between users in location-based social networks 

Chapter 3 proposes SC-Com, a method of separating the entire user into a 

community of users with similar behaviors by utilizing only the score and 

writing time of the review on an online shopping platform, and using the 

information obtained here for spam detection. Finally, Chapter 4 concludes 

the studies covered in this paper, and discusses implications and future 

development directions. 

    Chapter 2 Social Link Inference in Location-

based Check-in Data  

2.1 Background 

I have witnessed explosive and wide deployments of a plethora of online 

social network services (SNSs) such as Twitter, Facebook, Instagram, and 
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Foursquare during the last two decades. These days, people can interact 

with each other without meeting in person through online social networks, 

and the range of human behavior and interactions are broadened. Unlike 

traditional face-to-face social relations, I enjoy the opportunity to observe 

and collect human interactions on SNS explicitly and implicitly.                                                                                                                                                      

Users explicitly specify relations such as following/subscription, which 

provide critical information to identify the social network. As the social 

relation data are accumulated, the problem of inferring social interactions 

has gained expansive research attention. By utilizing social relationships, I 

can predict a person’s behavior [50], recommend purchases of products 

[38, 47], and provide customized advertising services [43]. Those 

applications come up with insights and opportunities for service providers 

and users.   

As various location-based social networks (LBSNs) and smart devices 

have been widely adopted, trajectory data have been collected and they 

have attracted a great attention due to the powerful possibility of a variety 

of applications. For example, POI recommendation [49, 50, 51, 2] or next 

visit prediction [52] has been actively studied. Also, mining social links from 

trajectory data is of great value in both academic and industrial domains, 

e.g., graph completion tasks [55], personalized social recommendations 

[10], and advertisements [4].  

Traditional studies on mining social links from trajectory data have focused 

on predicting pairwise relations without considering network structures [34, 

44]. They rely on the co-visitations history of users to infer social links 

between users. These approaches are rooted in the common belief that 
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friends tend to get along together and share their time in the same place [12, 

5]. One critical problem of these schemes is the cold-start problem; a 

problem incurred by data insufficiency. As check-in data in LBSNs are 

created by voluntary participation and posting of users, data is inherently 

selective and partial. Furthermore, co-visitation-based approaches adopt 

arbitrary definitions of co-visitation, ranging from a simultaneous visit to a co-

visitation within three days [29, 45]. Inconsistency in definitions can be 

regarded as a lack of generality when they are applied in other domains in 

the real world.  

 

Figure 2.1. Co-visitation distribution of friends in different time slots. 

In Gowalla-Austin, more than 60 percent of social links do not have a 

co-visitation within three days. In Brightkite-NYC, the ratio of social 

links which have never had co-visitation is about 86%. 

Lastly, co-visitation- based approaches consider opportunistic encountering 

of unknown persons as a genuine social interaction, especially when the 

social activity of people decreases due to situations like social distancing. I 

show this threat of misunderstanding from the data of LBSNs. I can observe 

that co-visitation cannot fully cover the friendship between users in the 



 

８ 

 

Gowalla dataset, which is one of the most popular LBSN applications. In 

Figure 2.1, I depict the distribution of social links based on different co-

visitation intervals. Even though I increase time intervals for defining co-

visitations up to three days, a notable amount of friends do not visit the same 

POIs during the time interval. In the Gowalla-Austin dataset, which I use in 

the experiment for this research, the ratio of real friends who never makes 

co-visitations is 36%. Furthermore, in the Brightkite-NYC dataset, this ratio 

increases to 86%. This evidence strongly implies that co-visitation-oriented 

techniques may fail to fully understand the characteristics of social relations 

in LBSNs. This phenomenon necessitates to inferring implicit relationships to 

boost the performance of social link prediction on LBSNs. If I consider the 

social link inference task as a supervised link prediction task, inferring implicit 

relationships may be handy. Heuristics such as common neighbors or 

preferential attachment [3] have been widely used in link prediction. However, 

I aim to consider this problem as unsupervised learning for wide and generic 

applicability in various domains without knowing their social relations. 

Recent studies on inferring users’ implicit relations can be classified into two 

classes; graph neural networks (GNNs) and network embedding-based 

methods. Both methods start by representing LBSN data as graphs such as 

user-POI visitation graphs and user-user co-visitation graphs. Using GNN, 

some models consider the implicit relation between nodes in the network 

structure by utilizing aggregation and message-passing schemes [25, 15]. 

The theoretical underlying of GNNs is homophily, direct neighbors share 

similar characteristics, and they aim to make the embedding of nodes to be 

similar to their neighbors. Many network embedding methods [1, 49, 45] 

which are inspired by the success of Deepwalk [33], Node2Vec[18] and LINE 
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[41] extract the information embedded in the graph structure while preserving 

the node information effectively. However, several points restrict the 

generalization and applicability of those methods. First, a part of social 

relations should be visible to learn embeddings [49], or they require 

complicated pre-training for graph convolution network [45]. In addition, [1] 

does not model the complex dynamics of human visitation behavior. 

Especially the essential need for labeled social relation is a critical limitation 

in real-world data because labeled data may be protected due to privacy 

issues in many domains or even may not exists. Even though explicit labels 

are scarce, there might be latent relations between users that are not visible 

[31]. In that case, I can infer latent networks from users’ trajectory data, 

without the ground truth of social relationships. A recent result [45] is a 

seminal method that considers unsupervised social link prediction in LBSN 

graphs. The authors proposed a graph convolution-based method using R-

GCN[36] in the co-occurrence graph of users and POIs. It partitions the 

trajectory of users into a series of sub-trajectories and utilizes the pretrained 

result as an input of the graph convolution network. 

However, they consider only the similarity and temporal distance of users’ 

visitation ignoring to extract behavioral patterns according to contexts of each 

visitation. Suppose that there is a user who lives in a suburb and works 

downtown on weekdays. She is likely to spend time downtown during the day 

on weekdays, but she tends to stay near her home during the nights and 

weekends. If I apply the traditional network embedding approaches, her 

embedding should be close to both downtown and the suburb, so that those 

three embedding vectors can be close to each other. This in turn results in 

information ambiguity that cannot separate her visitation and workplace. 
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Fortunately, if I consider multiple contexts of user embedding separately, I 

can effectively satisfy both conditions. Note that the context of each visitation 

is not related to a single aspect only. User behaviors are related to many 

aspects such as purposes of visitations and their locations. Contrary to prior 

schemes that focus on a single aspect, a scheme that comprehend multiple 

aspects in a harmonious way may enhance the prediction accuracy.  

 

Figure 2.2. Architecture of ANES. Multiple aspects of visitation are 

decomposed into different bipartite graphs. Each graph is embedded 

by a context-aware embedding scheme. 

In this paper, I propose a novel method called ANES (Aspect-oriented 

Network Embedding for Social link inference), a representation learning 

method customized for unsupervised learning scenarios. First, I regard 

trajectory data as a directed bipartite graph of users and POIs. Users and 

POIs are connected if there is a trajectory record between them. Features of 

an edge between users and POIs are defined by the aspect of each trajectory 

from additional information such as time slots, geographic information, and 

activity categories. I decompose the graph into aspect-wise bipartite 

subgraphs, each of which is learned separately by a context-aware 



 

１１ 

 

embedding scheme. The overall structure of ANES is depicted in Figure 2.2. 

 One main point of the context-aware embedding scheme is that if a user 

visits a POI in a certain context, they should be close to each other in the 

embedding space by having a similarly transformed vector from their context. 

Different from previous approaches, which only focused on co-visitations of 

users, I learn the behavioral characteristics of users by considering contexts 

between users and POIs. First, user embedding is projected by each context 

to model the user’s behavioral representation. After that, I define a transition-

based relation between the projected user and the POI. In the context-aware 

embedding scheme, relations between users are modeled as a mixed form 

of projection and transition. Users’ complex behavioral patterns in various 

contexts can be learned in this method. Context-aware embedding can lead 

to accurate representation learning useful for inferring hidden social relations 

between users without explicit label information in advance. After that, I 

measure the probability of social relations by comparing a pair of user 

embedding by concatenating the aspect-wise user embedding together.  

ANES works well in the unsupervised condition by effectively defining loss 

function from the relation between users and POIs, to model complex 

behavioral patterns of users upon various aspects.  

The major contributions of my work are as follows: 

• I consider the influence of various aspects on the check-in data of users 

and propose ANES, an aspect-oriented social link inference framework. To 

the best of my knowledge, it is the first unsupervised solution that considers 

a projection-based embedding scheme on the social link inference problem.  
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• ANES decomposes check-in data into multiple aspect-wise bipartite 

graphs and learns representation of users according to their relations in each 

graph to fuse different aspects and contexts. 

• I performed extensive experiments on four large-scale real-world LBSN 

trajectory datasets. The results show that ANES outperforms state-of-the-art 

baselines in predicting social links. 

The organization of the paper as follows. In Section 2, I review previous 

research on network embedding methods. Section 3 defines the trajectory 

network and formally state the social link prediction problem. In Section 4, I 

present ANES with the general concept with algorithms as well as learning 

procedures from LBSN data. Section 5 describes the performance 

experiments. I use eight public LBSN dataset and compare ANES with state-

of-the-art approaches. Ablation studies and the effect of parameters are also 

explained in Section 5. Lastly, conclusion and future work are included in 

Section 6. 

2.2 Related Work 

2.2.1 Location-based Social Networks 

There have been a lot of researches aiming for social link prediction with 

the emerging interest of LBSN. Many previous studies used real dataset 

obtained from operational LBSNs such as Foursquare, Twitter, and 

Gowalla [39]. [12] proposed a social-historical model to consider the effect  

of social ties on check-in behavior. Spurred by the success of network 

embedding approaches [33, 41] in various domains, network embedding is 

intensively considered for handling trajectory data. One notable example is 
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GE [46]. GE applied PTE (Predictive Text Embedding) [40], originally 

proposed for embedding bipartite networks, for POI recommendation tasks. 

[19] used richer supplementary information in addition to data from LBSN. 

They collected WiFi access logs of students’ smartphones and learned 

embedding by decomposing data to bipartite graphs and learning each 

graph iteratively. 

Predicting implicit social networks such as friends from trajectory data 

also has gained much attention. [45, 26, 20, 13, 14] aimed to infer social 

relations between users from extracted trajectory data. Especially, [26] 

chose vehicle mobility to extract features of human behavior and utilized 

them for inferring social relations between drivers. [45] first applied Graph 

Convolutional Network (GCN) [25] to learn the embedding of trajectory and 

member of location-based social networks. My work is closely related to 

translation based knowledge graph embedding, which is known to learn the 

embedding of entities and relations effectively [4, 44, 27]. Those methods 

assumed that there is a translation vector for a relation when related 

entities are represented in an embedding vector space. In user trajectory 

data, the relations are visitation contexts (time, location) and entities are 

users and POIs. Representation learning schemes in recent studies are 

defined as embedding directed relations between users and POIs. One 

remarkable approach is STAE [35]. They utilized one of the translation-

based knowledge graph embedding methods in POI recommendations. 

They also added a mechanism to effectively handle cold-start problem. 

However, few researchers have focused on using social network structure 

for the recommendation or for the link prediction using knowledge graph 

embedding methods. [54] proposed a multi view mixture model, which 
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unifies location matching, time-series matching, and relation matching 

modules to unify those aforementioned points to improve the link inference. 

Recently, [56] proposed a hybrid personalized and neighbor attention 

model for link prediction, by considering local and global interest semantics. 

[23] considered privacy-preserving methods while considering geographical 

and social influence between users in the POI recommendation task. [24] 

proposed a holistic representation learning method to capture both social 

networks and check-in activities by splitting POIs. 

 

2.2.2. Network Embedding 

GCN (Graph Convolutional Network) [25], GCN and its improved schemes 

have been popularly adopted for network and node embedding. They 

aimed to learn graph structure more effectively or make it eligible for more 

complex graphs such as information networks and heterogeneous 

networks. Since Graph Attention Network (GAT) [42] has introduced the 

attention model in the GNN framework, some research adopted GAT onto 

various tasks in graph embedding tasks. EGNN [17] applies an improved 

version of GAT and GCN to exploit multi-dimensional edge features by 

defining an aggregation operation with edge features. MARINE [11] 

proposed a unified embedding framework to model both homogeneous and 

multi-relational heterogeneous graphs.  

ASPEM [37] and PolyDeepWalk [28] proposed to define multiple facets 

for a single node to model heterogeneous relations between nodes. [32] 

first proposed a graph-attention-based embedding model for relation 

prediction in knowledge graphs (KG). They defined an attention operation 

for triplets consists of two entities and a relation and aggregated them to 
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learn embedding of entities and relation. HetSANN [21] considered type-

aware graph attention layers to encode the structural information of 

heterogeneous information networks. Heter-GCN [45] used R-GCN [36] to 

learn the visitation relation and co-occurrence relation of users and POIs. 

R-GCN proposes an advanced form of GCN aiming to handle graphs with 

multiple edge types by defining a different message-passing scheme for 

each relation. [22] considered multiplex networks which consist of several 

layers derived from different views and proposed three attention-based 

methods to fuse them for link prediction. [6]  

regarded link prediction problems in graphs as a node classification 

problem in line graphs to minimize the information loss which occurs in 

graph pooling of traditional deep learning models. 

 

2.3 Location-based Social Network Service Data 

I use four large-scale LBSN datasets: Foursquare1, Gowalla2, Brightkite3, 

and Yelp4 public review dataset. For each dataset, I selected two cities to 

analyze the effect of geographical and social factors. All datasets contain 

user ID, POI ID, and geographic information of POI such as latitude and 

longitude. In addition, the common context information, each LBSN dataset 

 
1 https://sites.google.com/site/yangdingqi/home/foursquare-dataset 

2 http://snap.stanford.edu/data/loc-Gowalla.html 

3 http://snap.stanford.edu/data/loc-Brightkite.html 

4 https://www.yelp.com/dataset 
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provides additional distinctive information. For example, Foursquare data 

contains the check-in timestamp and the category of each POI while Gowalla 

and Brightkite data contain the timestamp, and Yelp data contain the 

category of each POI. I select users in the largest connected components in 

each dataset for a fair comparison with random walk-based models. 

Considering the different characteristics of Yelp and other datasets, I exclude 

the users with fewer than 10 reviews in Yelp data. Table 2.1 shows the 

statistics of the datasets.  

Table 2.1. Statistics of dataset. Gowalla and Brightkite do not contain 

category data. 

Dataset Foursquare Gowalla 

Region NYC Tokyo Austin Chicago 

#Users 4,703 7,379 6,723 2,135 

#POIs 30,340 59,802 15,866 6,867 

#Check-ins 185,333 619,585 297,793 39,619 

#AvgLinks 5.11 14.01 11.19 4.88 

#Categories 410 404 - - 

Dataset Brightkite Yelp 

Region Chicago NYC Portland Vancouver 

#Users 597 792 19,785 8,994 

#POIs 3,561 5,872 17,432 12,832 

#Check-ins 24,336 29,553 1,480,464 752,778 

#AvgLinks 7.26 7.96 8.66 7.77 

#Categories - - 2,290 2,054 
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In each dataset, I utilize check-in timestamps, geographic information of 

POIs, and categories of POIs as contexts if they are available. As timestamps 

of check-ins are not discrete data, I divide the 7 day 24 hour time interval into 

168 time slots, which means that each time slot has a 1-hour length. For 

geographic information, I divide the region of each city into a 10x10 grid and 

designate each number of a grid that the POI belongs to. As shown in Table 

2.1, my experiment is applicable to the inference of social relations in various 

types of trajectory data. Also, each dataset has a different number of users, 

check-ins, or average links between users. Experiments on those different 

datasets provide a good opportunity to examine the generality of ANES. The 

Portland-Yelp dataset has the largest user population and constructs the 

densest graph, while the Brightkite dataset are relatively sparse. 

My work aims to infer social links using the trajectory data where each 

check-in is represented as a tuple of (user, contexts, POI). Contexts of each 

check-in are additional information which is contained in the data. From the 

check-in data, I extract the behavioral characteristics of users and find the 

most probable entities who are likely to have social links with them. In my 

environment, users with similar embedding have a higher probability to have 

a social link with each other. In LBSN data, I define the social link as shown 

in Definition 2.1. 

Definition 2.1. A social link between a pair of users (𝑢, 𝑣) is a reciprocal 

relation between them. 

For the set of user ids 𝑈, the set of check-ins 𝑆, the number of aspects as 

𝑛, and the set of POI ids as 𝑃, check-ins and aspects are defined as below: 
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Definition 2.2. A user’s check-in 𝑠 = (𝑢, 𝑝, 𝑐) ∈ 𝑆 is defined when a user 

𝑢 ∈ 𝑈  visits a POI 𝑝 ∈ 𝑃  with a set of contexts  𝑐 =

{𝑐ଵ, 𝑐ଶ, … 𝑐௡|𝑐ଵ ∈ 𝐶ଵ, 𝑐ଶ ∈ 𝐶ଶ, … 𝑐௡ ∈ 𝐶௡} From the check-in data, I construct n 

bipartite graphs 𝐺௜ = (𝑉, 𝐸, 𝐶) such that  

𝑉 = 𝑈 ∪ 𝑃 , 𝐸 = {(𝑢, 𝑝)|∃𝑐 ∶ (𝑢, 𝑝, 𝑐) ∈ 𝑆}, 𝐶 = 𝐶௜. 

In 𝐺௜, each check-in is represented as directed edge {𝑒}  ∈  𝐸 with an edge 

feature 𝑐 ∈  𝐶௜. My objective is to learn the representation of each node in 

G to efficiently model the check-in behaviors between users, times, and POIs. 

In short, this paper provides answers for the research questions below:  

RQ 1. Given trajectory check-in data as instances, how can I model 

relations between each element? 

RQ 2. How can I learn the representation of each user from the 

heterogeneous network to utilize in the social relation inference task? 

RQ 3. After learning representations of users, how can I measure the 

probability of social links between users? 

 

2.4 Aspect-wise Graph Decomposition 

To model the behavioral characteristics of users in LBSN, I propose an 

aspect-wise decomposition scheme to consider various aspects of check-ins. 

As one check-in record contains multimodal information such as geographic, 

temporal, and spatial features, I build subgraphs based on each of those 

features. In Figure 2.2, I show an example of two aspects in an LBSN graph. 

Two subgraphs have the same nodes and edges, but their embedding and 
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edge features are different. All subgraphs are passed separately to a context-

aware embedding scheme.  

Note that the number of aspects varies on each dataset. For example, user 

behavior from review data may not contain the exact visitation date, which is 

crucial for detecting co-visitations. Therefore, it is inadequate to practice co-

visitation based methods to such data. However, ANES can learn the 

embedding of users and POIs utilizing any available aspects such as 

categorical and geographical data. This point makes ANES more flexible 

and generalize better to any data that contain a plethora of visitation and 

behavioral contexts.  

 

 

2.5 Aspect-wise Graph Learning 

The key idea of ANES is to uncover users’ behaviors which change 

depending on contexts. In the i-th aspect, I define the transition-based 

relation between POIs and Users of certain context ci as follows. 
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𝑀௖೔
𝑒௨

(௜)
+ 𝑒௖೔

(௜)
≅ 𝑒௣

(௜) 

where 𝑒௨
(௜) and 𝑒௣

(௜)  are embedding of a user 𝑢  and a POI 𝑝  in  𝑖 -th 

aspect, respectively. 𝑀௖೔
 is a translation matrix that maps the user space to 

the POI space under the context, 𝑐. If 𝑢 visits 𝑝 in context 𝑐௜, embedding 

of 𝑢  on context 𝑐௜  is denoted as 𝑀௖𝑒௨
௜  . Also, there exists transition 

embedding vector 𝑒௖೔

(௜)
  between 𝑒௣

(௜)
  and 𝑀௖೔

𝑒௨
(௜) . After that, I define an 

aspect-wise score function of a triple (𝑢, 𝑝, 𝑐௜) as dot product of transformed 

user embedding and POI embedding as follows. 

𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑝, 𝑐௜)  =  (𝑀௖೔
 𝑒௨  + 𝑒௖೔

) •  𝑒௣  

Semantically, this score function depicts how a user’s embedding in a certain 

context has a transitive relation with her visited POI. This approach can 

provide sufficient representation space to learn the information of trajectory 

data on LBSN. 

To train ANES, I aim to maximize the difference between the score of real 

triples and the scores of arbitrary fabricated samples. For a real triple 

(𝑢, 𝑝, 𝑐௜), I propose the following contrastive loss function.  

𝐿(𝑢, 𝑝, 𝑐௜)  =  −𝑙𝑜𝑔(𝜎(𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑝, 𝑐௜)))  − ෍ 𝑙𝑜𝑔(𝜎(−𝑠𝑐𝑜𝑟𝑒(𝑢′, 𝑝′, 𝑐௜)))

(௨ᇲ,௣ᇲ,௖೔)

 

where (𝑢′, 𝑝′, 𝑐௜) is an arbitrarily fabricated check-in instance. In equation 3, 

I adopt a negative sampling method inspired from [9]. ANES generates 

negative samples from existing triples by ’corrupting’ a part of triples. When 

generating negative samples, I randomly pick users or POIs according to the 

distribution 𝑃(𝑢)  and  𝑃(𝑝),  which are proportional to the 3/4 squares of 
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count in data. The loss function increases the score of positive triples while 

lowering the scores of negative triples samples. A sigmoid function for σ 

prohibit steep increases and decreases of positive triples and negative triples, 

respectively. For multiple aspects, the sum of aspect-wise loss functions 

should be minimized. I define the objective function of ANES as follows:  

𝑂 =  ෍ 𝐿(𝑢, 𝑝, 𝑐௜)

(௨,௣,௖)∈ௌ

 

As I use mini-batch as the training procedure, I train ANES from the sum of 

all losses for given triples of each mini-batch. The procedure for training 

ANES is described in Algorithm 1.  

2.6 Inferring Social Relation from User Representation 

After embedding are learned for each user, time, and POI, I concatenate 

users’ embedding on all aspects as representations for their behavioral 

patterns.  

𝑒௨೔
 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑒௨೔

௖భ  , 𝑒௨೔

௖మ  , . . . 𝑒௨೔

௖೙  ) 

From learned representation of users from each aspect, I compute the 

pairwise similarity of user embedding as a probability that a social link exists 

between the user pair. In my experiment, cosine similarity is used. 

𝑃 (𝑢, 𝑣)  =  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑒௨, 𝑒௩) 

 

I compare ANES with seven state-of-the-art methods which can be 

performed in an unsupervised setting. The selected baselines are the best 

performing methods representing different approaches; graph embedding, 
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knowledge graphs, co-visitation, and multi-context embedding. I use the 

same hyperparameter values indicated in baseline papers. The baselines are 

as follows. 

• Deepwalk [33]: Deepwalk performs random walks and skip-gram learning 

to gain the embedding of each node. I apply Deepwalk on the User-POI 

graph ignoring edge features since Deepwalk does not support edge features.  

• Walk2Friends [1]: Walk2Friends is a skip-gram-based model which is 

proposed to be used on a user-location bipartite graph for social link 

prediction.  

• Metapath2vec++ [9]: Metapath2vec++ is a meta-path-based 

representation learning model specialized for heterogeneous graphs. To 

distinguish between Metapath2vec++ and deepwalk, I construct a tripartite 

graph of users, time slots, and POIs. Also, I build meta-paths from the 

tripartite graph. In that case, all contexts in each aspect are also considered 

as nodes.In Yelp data, I construct a graph using categories, instead of time 

slots.  

• STA-E [35]: STA-E is a KG-based embedding method that considers 

spatio-temporal contexts of each user using TransR [27]. I choose it to 

examine the possibility of adopting KG embedding methods for social link 

inference. Note that STA-E is devised for POI prediction. However, I include 

STA-E in the baselines to investigate the impact of knowledge graph 

embedding.  

• Heter-GCN [45]: Heter-GCN is a seminal representation learning model 

that first applies GCN for social link prediction. Heter-GCN uses R-GCN [36] 
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to extract embedding from the user-location graph. Heter-GCN utilizes Skip-

gram and Gated Recurrent Unit [7] also to pre-train embedding [57] before 

passing it into GNN. For pre-training, I use the same parameter values 

suggested in [57, 45]. Because Heter-GCN utilizes visitation time slots solely, 

I cannot apply Heter-GCN to the Yelp dataset and its performance result is 

not included. 

• PolyDeepwalk [28]: Similar to ANES, PolyDeepwalk considers multiple 

facets of nodes to represent the rich semantics of networks. I concatenated 

the overall representation of all facets to evaluate the performance.  

• ConvE [8]: ConvE is a convolution-based knowledge graph learning model. 

It defines the scoring function as a combination of convolutional and fully-

connected layers. To make a fair comparison, I considered all scenarios 

which include check-ins similar to Table 2.2 and stated the result with the 

best combination of features. 

 

2.7 Performance Analysis 

In each dataset, I utilize check-in timestamps, geographic information of 

POIs, and categories of POIs as contexts if they are available. As timestamps 

of check-ins are not discrete data, I divide the 7 day 24 hour time interval into 

168 time slots, which means that each time slot has a 1-hour length. For 

geographic information, I divide the region of each city into a 10x10 grid and 

designate each number of a grid that the POI belongs to.  

As shown in Table 2.1, my experiment is applicable to the inference of 

social relations in various types of trajectory data. Also, each dataset has a 
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different number of users, check-ins, or average links between users. 

Experiments on those different datasets provide a good opportunity to 

examine the generality of ANES. The Portland-Yelp dataset has the largest 

user population and constructs the densest graph, while the Brightkite 

dataset are relatively sparse. I use 128 or 256-dimensional vectors for 

embedding of users, POIs, and transition matrix of each aspect. All 

embedding vectors are initialized using Xavier initialization [16]. Also, I use 

128x128 or 256x256 matrix for the projection matrix. I adopt the Adam 

optimizer with a learning rate of 0.0001. The number of negative samples per 

positive sample is fixed to be five. To evaluate the result of embedding from 

ANES and other baselines, I split the social relation data into 20/80 for the 

validation set and test set, respectively. The batch size for learning ANES is 

set to be 128 for all datasets. The maximum epoch is 5,000. L2 regularization 

for all parameters is applied with a weight decay coefficient of 5 ∗ 10−4. 

ANES and other baselines are learned and compared on the server with a 

single TITAN X GPU.  

I learn a low-dimension representation of users and calculate the similarity 

of each embedding to generate a score that indicates the probability of a 

link between two users. Because each baseline uses its own similarity 

measure methods, I use three metrics - dot product, cosine similarity, and 

Euclidean distance - and select the best result among the three. As my 

approach is evaluated in an unsupervised environment, I use Area Under 

the ROC Curve (ROCAUC) as a performance metric. 
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Figure 2.3. Performance comparison of ANES in 8 LBSN dataset. 

Figure 2.3 compares the performance of ANES and those of the seven 

baselines. The results show that ANES performs better than other baseline 

approaches in all eight datasets in both embedding dimensions. As ANES 

considers the overall behavioral patterns of users in different contexts, it 

shows better inference than other graph based, or co-visitation based GCN 

methods. Also, ANES shows superior performance than multi-context and 

knowledge graph-based methods.  

One notable observation is that Walk2Friends is ranked second in case of 

Foursquare and Gowalla datasets. I guess that in large graphs such as 

Foursquare and Gowalla, the mechanism of averaging the representation of 

neighborhood nodes may cause the loss of information. However, on a small 

Brightkite dataset, Heter-GCN performs better than other random walk-

based methods. Also, compared to Heter-GCN, as the number of check-ins 

increases, there is a higher chance of opportunistic co-visitations among 

users without social relations. This may deteriorate the performance of Heter-

GCN by building many irrelevant edges in co-visitation graphs. To investigate 

this further, I discuss the relationship between data sparsity and the 
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performance of social relation inference in Section 2.8. On the Yelp datasets 

that do not have timestamp information, Polydeepwalk shows the second-

best performance. It implies that multi-context learning is effective on 

categorical check-in data. In contrast, knowledge graph-based methods do 

not perform well, suggesting that they fail to efficiently extract categorical 

information. ANES considers multiple contexts in each aspect and shows its 

effectiveness and superiority in social link inference. 

 

2.8 Discussion and Implications 

In this section, I analyze the findings from my results in a greater detail to 

shed light on the fundamentals of ANES. 

 

2.8.1 Distribution of Social Links 

As mentioned in previous sections, traditional approaches have focused 

on the co-visitation of users. However, they ignore propagated relationships 

which play an important role [52] in predicting social relations. I classify 

each social link by the closest interval of co-visitation and check how ANES 

effectively predicts them. In Figure 2.4, I divide social links by their minimal 

co-visitation interval. ANES, designed for inferring relationships beyond co-

visitation, shows a notable increase in performance when predicting user 

pairs that have no co-visitation. It reflects that ANES learns the propagated 

relationship more effectively than other graph-based approaches. Also, 

ANES showed the best performance when co-visitation interval is less than 

1 hour. It implies that my definition of time slots and my approach to learn 

visitations by time slots is effective. 
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Figure 2.4. Performance of social relation inference at different co-

visitation intervals. ANES effectively infers social relation in both 

situations when there is no co-visitation between user pairs and when 

the co-visitation interval is within 2-hours.  
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Figure 2.5. Performance on different proportion of data on three 

datasets 

 

2.8.2 Effect of Data Scarcity 

I compare the performance of social link inference by varying the scarcity 

of check-in data. Many existing random walk or graph neural network 

based approaches utilize graph structure, and their performance can be 

affected by the degrees or sparsity of graphs. It is an important issue in the 
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social link inference problem because predictions at initial stages while data 

is insufficient is important. To investigate the issue, I do the same task while 

changing the proportion of check-in data from 20% to 100% and apply 

ANES in the reverse chronological order from the last day of the check-in 

data. Note that I only evaluate the data for users who have at least one 

check-in during the training period. Figure 2.5 shows the range and the 

result on five different proportions of LBSN data. 

 Compared to the baselines, ANES shows the best performance in all 

experimental settings. Especially, ANES infers the social relationship of 

users better when the amount of provided data is small. When I use 20% of 

the dataset, ANES shows an average of 8.59% improvement than the 

second-best baselines. 

 A notable observation is that the relative ranks of baselines are different 

on each dataset. Heter-GCN performs better only in Brightkite-NYC data 

where the number of users is smaller than other datasets. There are 

noticeable differences in the characteristic of the Gowalla-Austin dataset 

and that of the Brightkite-NYC dataset. Because the Gowalla-Austin 

dataset contains a richer record of visitations accumulated in a short period, 

the temporal difference between check-ins can be ignored. This 

characteristic leads to good performances for time oblivious schemes such 

as random walk. Also, ANES performs well because it considers multiple 

aspects in addition to temporal information. On the contrary, on the 

Brightkite-NYC data where check-ins are sparse, Heter-GCN’s pre-training 

scheme discriminates ’old’ check-ins from ’new’ check-ins and efficiently 

extracts information that may change over time.  
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Another interesting point is that Deepwalk and Metapath2vec perform 

better on the 80% data of the Gowalla-Austin dataset than on the 100% of 

the data. Because the time interval increases from 7.3 months to 19.0 

months while the size of dataset increases only 20%, I can contemplate 

that additional check-in data are quite sparse and Deepwalk and 

Metapath2vec may not handle the sparse Gowalla-Austin dataset 

adequately. As the two random walk based models could not model each 

visitation differently, they seem to be vulnerable to noisy data from the early 

period of overall data. On the contrary, because ANES does not use 

random walk or GNN, they show robust performance regardless of whether 

the data or graph are dense or sparse. Those observations imply that 

ANES can be applied faster and more quickly than other baselines, with a 

small amount of data. 

 

2.8.3 Effect of Aspects  

In this experiment, I analyze the performance of ANES applying only 

subsets of aspects to investigate the impact of each aspect. As I consider 

time slot, categorical, and geographical data as aspects, I denote them as 

T, C, and G. Table 2.2 shows how aspects affect the performance of ANES. 

The result indicates that the geographical aspect is the most important in 

gaining the performance. The temporal and categorical data also boost the 

performance when they are combined with the geographical aspect. It 

implies that the graph decomposing scheme of ANES is effective to put all 

features together. 
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Table 2.2. Performance of ANES with different subsets aspects. T, C, 

and G denote time slot, categorical data, and geographical data, 

respectively. 

Dataset Foursquare Gowalla Brightkite Yelp 

Region NYC Austin Chicago Portland 

ANES (TCG) 0.654 - - - 

ANES (TC) 0.633 - - - 

ANES (TG) 0.645 0.719 0.550 - 

ANES (CG) 0.643 - - 0.729 

ANES (T) 0.615 0.683 0.539 - 

ANES (C) 0.598 - - 0.678 

ANES (G) 0.636 0.705 0.547 0.716 
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Figure 2.6. Visualization of time slot embedding using t-SNE. The 

upper figure is the projected position of each relation embedding in 3-

D space, and the lower figure is an enlarged version of each embedding 

to show which relations are close to each other.  

2.8.4. Visualization of Time slots 

Here, I visualize the learned representations of time slots using t-SNE [30]. 

I parameterized each time slot by 𝑀௧  and 𝐸௧ . Figure 2.6 maps 𝑀௧  onto 

three dimension spaces. I omit 𝐸௧ because its mapping is similar to Mt. In 



 

３３ 

 

Figure 2.6, I can observe that 168 time slots are divided into six clusters. 

Each cluster represents a set of time slots that have similar embedding. The 

Figure illustrates that cluster boundaries are roughly related to 

weekday/weekend and time-frame in 24 hours. As I mentioned in previous 

sections, I modeled different projections for time slot because the same 

behaviors during different context can defer. Also, users’ behaviors are 

periodic with a 24 hour cycle. The first cluster at the upper leftmost corner 

represents activities around lunch on weekdays. During that time slots, users 

go out for lunch with friends or colleagues. The second cluster at the center 

upper is similar to the first cluster, but it is related to the morning. Likewise, 

other clusters can be regarded as time slots in dawn or evening. The third 

and fifth clusters represent late day or early evening, and check-ins are not 

as frequent as other time slots. Also, weekday and weekend time slots are 

mixed together at the third and fifth clusters. The fourth and the sixth 

cluster consists of weekday night slots and weekend daytime slot, indicating 

that people tend to stay at home during those time slots. In short, the Figure 

2.6 implies that my time slot based ANES model properly models each time 

slot without any pre-trained embedding. 

Furthermore, I show top 10 similar/dissimilar pairs of timeslots by 

calculating cosine similarity of 𝑀௧ in Table 2.3. In Table 2.3, timeslot with 10 

o’clock in a day have highest similarities among all pairs. It implies that 

check-in behaviors of users are almost equivalent in each day. In dissimilar 

pairs of timeslots, many are calculated between weekday and weekend, and 

morning and afternoon or dawn.  
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Table 2.3. Top similar/dissimilar pairs of timeslots 

Timeslot Pair Similarity Timeslot Pair Similarity 

Mon 10 – Tue 10 0.8316 Tue 14 – Sat 2 0.1667 

Mon 10 – Wed 10 0.8177 Sun 3 – Mon 16 0.1700 

Tue 10 – Fri 10 0.8165 Sun 1 – Tue 14 0.1710 

Mon 10 – Fri 10 0.8154 Mon 0 – Mon 14 0.1724 

Tue 10 – Thu 10 0.8065 Mon 14 – Sat 2 0.1764 

Mon 10 – Fri 10 0.8050 Sun 1 – Fri 14 0.1770 

Tue 11 – Thu 11 0.8037 Sun 1 – Wed 15 0.1798 

Tue 9 – Fri 9 0.8008 Sun 3 – Tue 14 0.1839 

Tue 10 – Wed 10 0.7963 Sun 0 – Fri 14 0.1844 

Tue 11 – Fri 11 0.7927 Tue 14 – Sat 23 0.1848 

 

 

2.9 Summary 

In this paper, I propose ANES to perform representation learning on 

User-POI check-in data for unsupervised social link inference. I design the 

aspect-oriented relationship between users and POIs to learn both the 

pairwise relation and network structures. I show my approach is superior to 

other state-of-the-art methods by showing the result of the unsupervised 

link prediction task. I also analyze the effect of each aspect in various 

conditions on the real datasets. ANES can be applied to any location-based 

domain because it does not need any pre-training and additional 

information on existing social relations. Also, contrary to the co-visitation 

based methods which requires check-in timestamps, ANES provides 
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adequate performance using other available aspects such as geographical 

and categorical information. 

While I define an effective way to decompose check-in data into multiple 

subgraphs, there is still space to improve in ways of learning those 

subgraphs. I would expect improvement as I can extract more information 

from check-in data and learn the graph effectively by considering the 

following points.  

• As I prove that ANES is powerful to infer social relationships between 

users in a relatively short amount of data collection, I will explore the 

dynamics of social link formation such as predicting relations that are likely 

to be disconnected in the future. 

• As multi-aspect embedding of ANES has proven to be effective, I will seek 

a way to expand my work to other problems beyond friend inference. 

• Finally, I will improve ANES to consider the chronological relation 

between check-ins in the future. This improvement may include dividing 

graphs by timestamps or considering time-related relations between check-

ins. 

 

Chapter 3 Detecting collusiveness from 

reviews in Online platforms and its application  

3.1 Background 

While I want to think that purchasing products in online-markets is mostly 

based on my own decision, by many routes my preference and desire for 

everything can be easily influenced by others’ opinions. From the reviews of 
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new hotels or restaurants to the Tomatometer of Rottentomattoes, my 

decision-making process are closely related to the experience of previous 

customers. In 2019, 91 percent of U.S adults responded that they read 

online reviews for new purchases, and more than 80 percent of review 

readers trust online reviews as much as a personal recommendation, 

according to the BrightLocal Consumer Review Survey5. Furthermore, 

about 41% of responders think that reading online reviews is helpful, which 

is more than 33% of responders who chose government oversight, 

according to Pew Research Center’s 2016 survey6 . That’s why many 

online shopping platforms have exhibited their customers’ reviews at the 

front of their product page [70] . This belief of customers starts from the 

assumption that all reviews they see are genuine and sincerely-written 

without frauds.  

Unfortunately, there are almost no such naïve scenarios that only genuine 

customers write product reviews. Due to the importance of reviews on the 

purchasing process, many merchandisers or service-owners want to store 

positive reviews on their products’ pages. To fulfill their desire quickly and 

easily, they tend to manipulate fake reviews, such as paid reviews which 

are generated to boost certain products, to mislead potential customers by 

hiding genuine consumers’ opinions. There are lots of online services that 

can be easily found to aid ‘marketing’ of certain products, by providing 

‘genuine-alike’ fake reviews on various platforms [90]. Amazon Mechanical 

 
5 https://www.brightlocal.com/research/local-consumer-review-survey/ 

6 http://www.pewinternet.org/2016/12/19/online-reviews/ 
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Turk is one of the popular websites in which purchasers can hire crowd 

workers to promote their products or demote competitive products.  

Many approaches have aimed to detect certain suspiciousness from 

review data. Some research has focused on the contents of reviews, by 

utilizing personal insights [73,94,95]. Excessive use of unigrams or ALL-

capitals words were examples of text-oriented features. Also, techniques to 

find reviews that are significantly different from other users have been 

developed. According to previous researches, opinion spam reviewers tend 

to show bimodal distribution on their posting rates [76] or tend to be 

intensively active in a short period [78].  

However, malicious reviewers became harder to find, by disguising their 

writing style and hiding their abnormal behaviors by using compromised 

accounts [69]. Therefore, a central point of detecting so-called ‘Sybil’ 

spammers are changing to consider the objective of opinion spamming 

itself. Even though the spamming account protects themselves, they should 

come out of the closet for their purpose to manipulate some products’ 

status. For that reason, their behavior should be collusive. My research has 

mainly focused on this characteristic of opinion spammers.  

In this paper, I propose SC-Com, a robust spam detection method which 

can be used in many domains by only considering primary data such as 

time data and ratings. SC-Com has caught opinion spam reviewers 

effectively and precisely in large-scale real-world data. It aims to extract 

communities of reviewers with their behavioral collusiveness and utilizes 

features from each community to supervised learning for detecting opinion 

spammers. First, I observe the importance of finding collusiveness in 
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opinion spam, by constructing a projection graph of reviewers according to 

their behavioral similarities. Second, I propose the framework to divide 

whole users into closely related communities and discriminate each 

community by extracting features related to communities’ suspiciousness. 

Lastly, I prove that my approach can provide a reliable and robust solution 

with a high F1 score of 0.93 in a real-world dataset. Figure 3.1 shows an 

overview of my proposed framework.  

 

Figure 3.1. SC-Com utilizes community-based data from user 

similarity projection graph and review data to classify reviews as 

spams and benign reviews. 

The main contributions of this paper are summarized as follows:  

• I propose SC-Com, which captures collusive spammer groups from the 

rating and time data, which are immune to the camouflaging of writing 

skills, and I provide a procedure to optimize my method for a real-world 

dataset.  
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• SC-Com is strong against camouflaging of spammers such as adding 

irrelevant reviews by restricting the weight of edges while detecting 

communities.  

• From the experiment using the real-world opinion spam dataset, my 

method outperformed previous detection methods especially by showing 

the improvement in recall. 

 

3.2 Related Work 

Research in identifying spam reviews aims to find suspicious reviews 

which are likely to have different characteristics from regular reviews 

(‘Benign’). Lots of features have been extracted and used for review spam 

detection. While many researchers have utilized users’ behavior to 

discriminate spams from benign reviews, some are interested in finding 

groups of suspicious users, by finding collective behavior of malicious 

activities. I briefly introduce many approaches to detect spam reviewers in 

history.  

3.2.1. Individual Spam Detection  

One of the well-known insights is that spam review has malicious contents 

which are commonly regarded as ‘paid reviews’. That was the reason why 

the dataset in traditional researches is revised with human investigation. 

For example, [94, 95] utilized their personal knowledge to label the review 

data, with the information of deleted review labels. From the computational 

approaches such as [73], some personal knowledge has been extracted as 
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key features for opinion spam detection. For example, the ratio of capital 

words, the ratio of brand names, and the length of the review have been 

utilized for detections in [73,81,95]. Furthermore, finding differences in the 

review text of users using natural language processing has been proposed, 

and showed decent result [62, 64, 82, 92. However, malicious reviewers 

became harder to find, by disguising their style of writing. That is the reason 

why behavioral features have been considered in addition to linguistic 

features in opinion spam detection [81,95]. From the insight that spam 

accounts which are created for malicious behavior are active in an 

intensively short period, the maximum number of reviews in a day [78] or 

some metrics to describe the ‘burstiness’ of users have been proposed in 

[66]. It is known that many malicious behaviors in the social network are 

showing a suspicious pattern in the viewpoint of time distribution, and the 

temporal dynamics of spam users are different [72]. [68] applied a 

Bayesian-oriented approach to find opinion spam reviews using time series 

of user activities.  

[81] proposed a notable example which considered text, behavioral, and 

network data altogether. They assumed that user, review, and product could 

be divided into two classes, which are ‘spammer/benign’, ‘target/non-

target’, and ‘fake/genuine’. From the initially calculated prior probabilities 

from data, they performed loopy belief propagation to classify each network 

object collectively. Similar assumptions are proposed in [75, 91]. [75] have 

proposed three different score metrics for each rating, user, and product as 

reliability, fairness, and goodness. Their assumptions were that there would 

be a proper score which should be given to a product if all users are 

genuine, and fraudsters tend to give low ratings to good products and give 
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high ratings to bad products. [77] considered a multimodal network 

embedding method using a probabilistic review graph to calculate the 

spamcity of review, reviewer, and products. [65] considered existing metrics 

for spam detection as priors and performs loopy belief propagation to 

ensemble those metrics. [99] considered recurrent convolutional neural 

network to discriminate deceptive review from other truthful reviews.  

[87, 89] considered a way to solve imbalanced class issues, because the 

number of spam reviewers is quite smaller than benign users. They 

proposed a variation of support vector machine (SVM) or generative 

adversarial network (GAN) to overcome the scarcity of dataset.  

3.2.2 Collusive Spam Detection 

Many researches tried to find the collective behavior of malicious users 

because review spams are intended to hide honest reviews and dump 

positive/negative reviews to falsify the rating of products [71,72]. Their 

behavioral patterns should be collective and synchronized to dump many 

contents effectively. This approach has been widely used in social media 

such as finding socially similar accounts [61]. One example is bimodality 

and co-bursting, which is crucial in spam reviews. [76] focused on those 

two phenomena and proposed the Hidden Markov Model-based method. 

[69, 85] focused on finding groups of suspicious users according to their 

behavioral patterns and extracted those ‘blocks’ in the network. Those 

kinds of approaches were useful for many domains because only simple 

features as time sequences are needed to detect blocks from whole 

networks. [69] proposed a suspiciousness score for each node and edge 

and calculated the density for subgraphs by dividing the total score by the 
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size of each subgraph. By removing less suspicious edges and nodes from 

the whole graph until the density is maximized, they could detect dense 

blocks iteratively. They provided improved detection results from the similar 

previous approaches of [101] and also provided theoretical insights to 

justify their greedy-based algorithm is powerful. [83] focused on identifying 

spammer ratings based on differences between spammer ratings and the 

majority ratings of honest reviews. [97] focused on a single particular 

product and proposed indicative signals for the products’ time series of 

reviews. They checked the 8 indicative signals such as average rating and 

a ratio of singletons, and they detected the possibility of anomalies such as 

spamming activities from the sudden change of those signals. [74] inferred 

the hidden collusiveness between singleton spammers to detect group 

spam attacks.  

From many researches, activities of users are often represented as 

graphs to detect collusive spams. [59, 93, 94, 99] proposed user-user 

projection graphs which are converted from bipartite review graphs. Some 

well-known community detection method has been used to catch malicious 

communities among the whole user network [80]. [99] have constructed 

suspicious social links from review data and employed the Louvain Method 

[60] to extract communities. After that, they tried to boost their detection 

techniques by adding the method to discriminate against Sybil 

communities. [79] utilize tripartite graphs, which consider reviewer, rating, 

and product as heterogeneous nodes. [96] focused on finding nested 

spammer groups and targeted products by ranking users and products by 

metrics such as abnormality and diversity, and they proposed Network 

Footprint Score (NFS) to guess suspiciousness scores of each product. 
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[63] proposed a notable approach which utilized graph embedding such as 

Node2Vec [67] to rank spammer groups based on their collusiveness. [84] 

utilized review spam features as heterogeneous information networks for a 

network classification problem. 

 

3.3 Online Review Data 

I use the dataset of [95], which is collected from Amazon.cn. It contains a 

snapshot of 1,205,125 reviews written by 645,072 reviewers on 136,785 

products. I choose this dataset for validating my method because it has 

about 8-years long-term data and it is good to show general applicability by 

using one of the most popular e-commerce website data. Furthermore, due 

to the system that reviewers cannot delete their own review by themselves, 

labeled data is more reliable compared to datasets from other domains. 

Each review data has two-class labels, non-spammer, and spammer. 1,937 

reviewers are manually annotated as spammers in total. Though original 

data has six attributes (Reviewer ID, Product ID, Rating, Date, Product 

Brand, and Review Text), I decided to use only four attributes to show the 

effectiveness of my proposed method without considering linguistic 

features. 

To start utilizing online review data, I assume a set of a user 𝑈 =

 {𝑢ଵ, 𝑢ଶ, … 𝑢௡} and a set of products 𝑃 =  {𝑝ଵ, 𝑝ଶ, 𝑝ଷ, … 𝑝௠}. Each review has 

four features as {user, product, time, rating}, and each element means the 

ID of a user, ID of a product, posted time of a review, and rating on a 
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review. A user 𝑢௜ and a product 𝑝௝ are connected if there is a review on 

𝑝௝ by 𝑢௜. Intuitively, they form a bipartite graph.  

From the bipartite graph of reviewers and products, I now propose SC-

Com. SC-Com starts from converting the review graph into a projection 

graph between users, and it performs a community detection procedure to 

group users by their similarity. The last part of this section is an explanation 

of the feature selection and classification method for supervised learning. 

3.4 Collusive Graph Projection 

Before grouping reviewers as communities, I project the bipartite graph G 

into the weighted undirected graph of reviewers based on their pairwise 

collusiveness. Pairwise collusiveness of two reviewers is defined as the 

sum of elementwise collusive scores which is calculated within one product. 

I choose each elementwise collusive score as an exponential form of 

feature difference, as the possibility of colluding should be maximized when 

those features are the same, and it should decrease fast as the difference 

increases. Four basic features are used to define elementwise collusive 

score in a single product, including:  

Time Difference: The difference of time between two reviews in a 

product. Normally, the participants of spam campaigns tend to write reviews 

in a fixed period, so their collusiveness is bigger when they write reviews in 

a close time.  

Rating Difference: The difference of review rating between two reviews in 

a product. Writing reviews with the same polarity is essential in opinion 

spam behavior.  
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Time Freshness: The time gap between their reviews and the first review 

of the product. I choose the later review between two reviews to calculate 

the time gap.  

Rating Abnormality: The difference of review rating between the average 

rating of the product and two reviews. I get an average rating difference of 

average rating and two reviews. Using those four features, the pairwise 

collusiveness score function is defined as:  

Definition 3.1. For a user pair (𝑢, 𝑣), let 𝑝 denote a product which is 

reviewed by both users. The pairwise collusiveness score 𝑐(𝑢, 𝑣, 𝑝) of 𝑢, 𝑣 

on 𝑝 are defined as follows:  

𝑐(𝑢, 𝑣, 𝑝)  =  𝑒
ି൬ ఈห௧ೠ೛ି ௧ೡ೛หାఉหோೠ೛ିோೡ೛หାఊൣ௠௔௫൫௧ೠ೛ ,௧ೡ೛൯൧ାఋ൤ோ೛ି

ோೠ೛ ାோೡ೛

ଶ ൨൰
 

The four weight parameters α, β, γ, δ are indicative of the significance of 

each feature in relation to one another, with higher values indicating greater 

importance.  

To optimize four parameters, I aim to define new term which is calculated 

by ratio of collusiveness scores of collusive spammer pairs among all pairs 

of reviewers in a product. I call the term as Well-formness as follows:  

Definition 3.2. In each product p, the Well-formness 𝑊(𝑝) is the ratio of 

the sum of collusiveness scores of positive colluding pairs (𝑢ᇱ, 𝑣ᇱ) to the 

sum of collusiveness scores of all pairs (𝑢, 𝑣).  

𝑊(𝑝) =

⎩
⎪
⎨

⎪
⎧∑ 𝑐(𝑢ᇱ, 𝑣ᇱ, 𝑝)(௨ᇲ,௩ᇲ)

∑𝑐(𝑢, 𝑣, 𝑝)
       𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐𝑜𝑙𝑙𝑢𝑑𝑖𝑛𝑔 𝑝𝑎𝑖𝑟 (𝑢ᇱ, 𝑣ᇱ)

1                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                   
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To jointly maximize the Well-formness in all products, I propose the target 

function O as follows:  

𝑂 = ෑ 𝑊(𝑝)

௣

 

To maximize the target function, I adopt the Stochastic Gradient Method 

(SGD) to optimize all 4 parameters. Optimized parameters and their 

implications are stated in Table 3.1. Table 3.1 provides an insight to 

understand which parameter is more important compared to others. As α is 

bigger than γ, the impact of time differences drops faster than the impact of 

time freshness as it goes far from zero.  

Table 3.1. Values of optimized parameters in SC-Com.  

Parameter Value 

α (Impact of time difference) 0.001484 

β (Impact of rating difference) 0.717043 

γ (Impact of time freshness) 0.000266 

δ (Impact of rating abnormality) 0.516693 

 

From the pairwise collusiveness score of product p for two users, I add 

them cumulatively for all products to derive the overall collusiveness of two 

users. 

 Definition 3.3. The collusiveness score 𝐶(𝑢, 𝑣) of two users (𝑢, 𝑣) is 

the sum of pairwise collusiveness scores. 
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𝐶(𝑢, 𝑣) =  ෍ 𝑐(𝑢, 𝑣, 𝑝) 

௣

 

Therefore, if two users have written collusive reviews in several products 

together, the weight of the edge between them would probably be higher 

than others. One of the strong points of my definition of collusiveness score 

is that the similarity is not decreasing by camouflaging. Even if a spammer 

writes lots of genuine-alike reviews to pretend to be a normal user, the 

collusive score between him and his colluders are not affected. 

3.5 Reviewer Community Detection 

From the constructed projection graph of 3.1, I divide the whole projection 

graph as subgraphs, by performing Restricted Louvain Method, which is a 

modified version of one of the most widely used community detection 

algorithms. While Louvain Method has been outperformed empirical 

community detection methods in modularity, it is not efficient to use this 

algorithm directly in my constructed similarity graph. That is because the 

weight of edges is not standardized, so the classic Louvain Method would 

construct large communities which consisted of some non-spammers and 

spammers mixed. To get a result of more partitioned communities, I adopt a 

threshold term λ to discriminate between heavily collusive users and others. 

My Restricted Louvain method based community detection algorithm is 

shown in [Algorithm 2].  
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In line 9, I compare the collusiveness of nodes with their neighbors and 

prohibit the case of merging communities with small collusiveness. I could 

make more strongly connected communities whose node has at least one 

edge with a collusive score which is higher than λ with its neighbors. The 

selection of parameter λ in [Algorithm 2] is related to the direction of forming 

community structure. If λ has a high value, I restrict the minimum weight of 

edge more to construct many small communities. If λ has a small value, big 

communities would likely be formed. I investigated the impact of choosing 

appropriate λ by varying it in Section 3.8.5. After this section, all experimental 

results are gained when λ=1.7, which are shown as best in my experiment. 

From each community, their network structure is a useful feature revealing 

that they are participants in a campaign. Table 3.2 shows the selected list of 

community-related features I used in the classification. Especially, I used 

entropy-related features which are inspired by [81], such as CF8-CF10. The 

full list of features I used is in [Appendix 1]. To measure how a community’s 
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members’ collusiveness, I consider reviews written by them together to check 

the collectivity of rating and review time interval. 

Table 3.2. Features extracted from detected communities. Shared 

features mean all members in a community have the same value, while 

Individual features are different individually. My original features are 

noted as *.   

Number Feature Category 

CF1 Number of nodes in a community graph Shared 

CF2 Number of edges in a community graph Shared 

CF3 Density of a community graph Shared 

CF4 Average degree of a community graph Shared 

CF5 Number of products reviewed by members of a 

community 

Shared 

CF6 Number of reviews written by members of a 

community 

Shared 

CF7* Entropy of number of reviews by products Shared 

CF8* Entropy of intervals of writing time of a community Shared 

CF9* User Entropy of Review Count Shared 

CF10* Entropy of Rating Distribution Shared 

CF11 Average Time Difference Shared 

CF12 Standard Deviation of Time Difference Shared 

CF13 Average Rating Shared 

CF14 Standard Deviation of Rating Shared 

CF15 Lifetime of a community Shared 

CF16 Average weight in a community graph Individual 

CF17 Number of Neighbors in a community graph Individual 
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CF18* Highest weight among neighbors Individual 

CF19* Secondary Highest weight among neighbors Individual 

CF20* Smallest weight among neighbors Individual 

 

Also, I included features related to users’ individual behavior which is 

related to individual reviews and time. The selected list of features is shown 

as follows in Table 3.3. For singleton nodes, which do not belong to any 

communities, I used features in Table 3.3 for classification. 

Table 3.3. Features extracted from user’s review data. My original 

features are noted as *. 

Number Feature 

IF1 Number of reviews 

IF2 Date of First review 

IF3 Date of Last review 

IF4 Lifetime (IF3-IF2) 

IF5 Number of reviews on one day a reviewer wrote the most 

IF6 A ratio of reviews on the day a reviewer wrote the most to the total 

number of reviews (IF5/IF1) 

IF7 Entropy of review writing time 

IF8 Average time difference of reviews 

IF9 Standard Deviation of time difference of reviews 
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IF10 Ratio of positive (4-5 in 5-scale) reviews 

IF11 Ratio of negative (1-2 in 5-scale) reviews 

IF12* Ratio of relatively positive (higher than average) reviews 

IF13* Ratio of relatively negative (lower than average) reviews 

IF14 Average Rating 

IF15 Standard Deviation of rating 

 

3.6 Reviewer Community Feature Extraction and 

Spammer Detection 

I use random forest method to train the classifier with my extracted 

features. I compare my proposed method with seven recently developed 

approaches and a simplified version of my method, which are summarized 

in Table 3.4.  

Table 3.4. Summary of baselines with their methods. 

Baselines Method 

GC [95] Iterative Classification Algorithm 

SVM [95] Support vector machine 

SpEaglePlus [81] Loopy belief propagation 

FRAUDAR [69] Density-based greedy approach 

Mzoom [85] Density-based greedy approach 

GSBC [93] 
Bi-connected graph-based min 

cut 
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DEFRAUDER [63] Graph embedding 

SC-Com(Naïve) 
Louvain Method in 

collusiveness graph 

SC-Com 
Restricted Louvain Method in 

collusiveness graph 

 

GC [95] proposed the collective inference problem based on Iterative 

Classification Algorithm [102]. I compared the result from the result in their 

paper. They also provided SVM-based approach, whose result is denoted as 

SVM in Table 3.6. 

 SpEaglePlus [81] provided a detection algorithm in opinion spam, which 

utilized loopy belief propagation to reviewer-product network. I excluded 

parts of linguistic feature parts of SpEaglePlus. 

FRAUDAR [69] and Mzoom [85] detects fraudulent blocks from the graph 

iteratively, so I ran it several times until I get the highest F1-Score using 5-

fold cross validation. Also, I constructed same features of my extracted 

features in fraudulent blocks. 

Naïve Louvain is a simpler version of my method, which uses the basic 

Louvain method for community detection.  

GSBC [93] detects spammer groups by dividing the network into bi-

connected components and using their spamcity. 

DEFRAUDER [63] is a state-of-the-art approach which detects candidate 

fraud groups and ranking them by mapping reviewers into embedding space.   
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For a fair comparison, unsupervised methods such as FRAUDAR and 

Mzoom are converted to supervised methods by extracting the same 

features which are included in my proposed method in their detected blocks 

and use random forest method. I called them FRAUDAR+ and Mzoom+. For 

GSBC, I include my original features into GSBC and name it as GSBC+. For 

DEFRAUDER, I considered the maximal possible performance from the 

detected candidate fraud groups to leverage the gap between supervised 

learning and unsupervised learning. 

 

3.7 Performance Analysis 

I set up classifiers using a part of my features, to check the influence of each 

feature type. First, I perform the classification task using individual features. 

As community features are defined only on users which belong to any 

communities, I perform classification separately using them. In the last part, 

I combine two types of features and perform classification from all data. Table 

3.5 includes the precision, recall, and F1 score by the use of each feature.  

Table 3.5. Classification performance by varying the scope of features 

 Precision Recall F1 

Individual 0.750 0.804 0.776 

Community 0.959 0.947 0.952 

Community+Individual 0.940 0.926 0.933 
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I observe that considering features from each reviewer’s local community 

structure can detect spammers effectively compared with considering 

individual behavior features. It is clear evidence that SC-Com can separate 

collusive spammers well from all users. When I consider all features, my 

result shows a great improvement of precision and recall, compared to the 

result when using individual features.  

Next, I compare the performance of spammer classification of SC-Com with 

previous baseline approaches in Table 3.6. I included a result of ‘Naïve 

Louvain’, which just use original Louvain method, by not restricting the weight 

using parameter λ in my research.  

Table 3.6. Classification performance with baselines 

 Precision Recall F1-Score 

SpEaglePlus [81] 0.936 0.531 0.679 

FRAUDAR+ [69] 0.886 0.550 0.680 

Mzoom+ [85] 0.914 0.629 0.745 

GSBC+ [93] 0.906 0.699 0.789 

SVM [95] 0.833 0.827 0.829 

DeFrauder [63] 0.941 0.88 0.910 

GC [95] 0.939 0.904 0.919 

SC-Com (Naïve) 0.929 0.873 0.900 

SC-Com 0.940 0.926 0.933 
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At first, SC-Com performed better than all baselines, especially by showing 

a higher recall. The main difference between SC-Com and other baselines is 

significant increase in recall. It means that SC-Com provides high-quality 

clusters using Restricted Louvain method to extract collusive communities 

effectively. One reason for such success is the effect of parameter λ, whose 

effect was shown by the difference between SC-Com(Naïve) and SC-Com. 

When I instantly apply Louvain methods without filtering the edge weight, 

there are big communities which contains a large number of both spammers 

and benign users. By constraining the formation of big communities using λ, 

my proposed method could find more fine-grained communities. 

3.8 Discussion and Implications 

 In this section, I analyze my result in a practical way, to get insight for 

opinion spam ecosystem. First, I look at my approach thoroughly by 

examining the quality of community detection, and the distribution of features 

among instances. After that, I will investigate the effect of each parameter by 

setting it in various conditions.  

3.8.1 Quality of Community Detection 

As I divided reviewer as collusive review groups, I show how my community 

detection successfully separate spammers and non-spammers primarily. 

Figure 3.2 shows the quality of community detection based on overall purity 

and entropy of detected communities as threshold parameter λ varies. It 

shows that SC-Com successfully discriminates communities of colluding 

spammers and non-spammers with higher than 90% purity in every 
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parameter condition. Even though the purity and entropy are the best when 

λ is 1.0, the classification performance shows the best when λ is 1.7. I also 

show the recall and coverage of community detection method in the second 

figure in Figure 3.2, as for various λ.  

 

Figure 3.2. The result of community detection. In every 𝛌, the overall 

purity of communities is higher than 0.9. It means detected 

communities are mostly spammer groups, or benign groups. Second 

figure depicts the number of spammers and benign users as 𝛌 varies. 
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 3.8.2 Characteristics of Features 

Also, I investigate the distribution of each community-based feature as 

shown in Figure 3.3. I can find that spammers would like to be in a larger 

community than benign reviewers, and their behavior would be more 

synchronized due to the distribution of CF4. I detected their collusiveness 

from calculating the concentration of their behaviors. That is one of the 

reasons why my proposed method captures collusive spammers effectively. 

Also, the users in spammer groups tend to write more similar amount of 

reviews compared to benign users, according to the result of entropy-related 

values. Furthermore, their reviewing behavior would occur with shorter 
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Figure 3.3. Cumulative distribution of community-based feature in all 

reviewers when λ=1.7. 

intervals, which is shown in the result of CF11. CF18 is a notable feature 

that means spammers have closer neighbors than benign users.  

In Figure 3.4, I depicted the distribution of individual behavior features. I 

could find that there is a difference in the lifetime and the number of reviews 

between benign users and spammers. A remarkable observation is that the 

distribution of IF5 and IF6 are different between spammers and non-

spammers. Spammers tend to write multiple reviews in a single day, but tho- 

 



 

５９ 

 

Figure 3.4. Cumulative Distribution of Individual Behavior-based 

Features  

se behavior takes place occasionally, while many benign users tend to write 

most of their reviews in a single day. Also, the drastic difference in entropy 

makes this observation clearer.  

3.8.3 Robustness of SC-Com 

To evaluate the robustness of SC-Com, I set up two scenarios of review 

spam behaviors and conducted classification tasks: camouflaging and 

compromised. Those two scenarios are usually considered as potential harm 

of review spam detection, because spammers hide their identity by adopting 

those methods. As I assume that these situations occur after the construction 

of SC-Com, I keep the same parameter of Section 3.4.  

The first scenario is based on camouflaging behavior of spammers. As I 

mention in previous sections, spammers tend to hide their abnormal 

behaviors by acting as benign reviewers. To model this phenomenon, I 

randomly choose a portion of spammers and added new benign reviews 

which are sampled from original benign reviews. Table 3.7. depicts the 

performance of SC-Com in varying number of camouflaging spammers. In 

Table 3.7, the f1-score of SC-Com did not drop below 0.919 from 5 accounts 

to 290 accounts. This result shows that SC-Com is not severely affected by 

camouflaging behaviors of spammers. 
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Table 3.7. Classification Performance of SC-Com in Camouflaging 
Scenario 

#Accounts 0  5 10 15 97  

(5%) 

194 

(10%) 

290 

(15%) 

Precision 0.940 0.948 0.947 0.937 0.944 0.934 0.942 

Recall 0.926 0.901 0.916 0.940 0.912 0.904 0.898 

F1-Score 0.933 0.924 0.932 0.938 0.928 0.919 0.920 

 

Also, I consider compromising accounts as the second scenario, which 

involves the civil spam attacks by using existing benign accounts to 

generate spam reviews. Similar to first scenario, I randomly choose a 

portion of benign users and added new spam reviews which are sampled 

from reviews of spammers. To make the scenario more reliable, I set up the 

period of each spamming campaign as 3 weeks and consider all spam 

reviews’ rating as 5. Table 3.8 depicts the performance of SC-Com in 

varying number of compromised accounts. In Table 3.8. the f1-score of SC-

Com is not dropped below 0.926. Those means that almost more than 80% 

of compromised accounts can be quickly detected as spammers using SC-

Com. 

Table 3.8. Classification Performance of SC-Com in Compromised 
Accounts Scenario 

#Accounts 0  5 10 15 97  

(5%) 

194 

(10%) 

290 

(15%) 

Precision 0.940 0.943 0.949 0.937 0.936 0.937 0.933 

Recall 0.926 0.910 0.918 0.929 0.917 0.914 0.924 

F1-Score 0.933 0.926 0.933 0.933 0.927 0.926 0.928 
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 3.8.4 Parameter Study 

As I set up the threshold parameter λ as restrictions for community detection, 

I show the impact of threshold parameter λ by doing whole framework with 

varying values. With a high value of λ, communities are formed with smaller 

and sparser sizes. As shown in Figure 3.5, my framework is robust for varying 

λ, so it can be tuned for various domains with different atmosphere. 

 

Figure 3.5. Parameter Sensitivity of λ. As my framework shows the 

best performance when λ=1.7 with the highest F1, the overall 

performance remains stable when λ varies. 
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3.9 Summary 

In summary, I performed a novel opinion spam detection using community-

based anomalies. In the previous work, using empirical detection algorithm 

such as text analysis were shown not to be useful as the spammers 

become more intelligent and disguise their writing styles. To detect those 

spammers that are getting hard to be found, I focus on the collusiveness of 

their behavior, which is closely related to the purpose of opinion spam 

writing. By catching anomalies in two sides, one is community-based and 

one is individual behavior-based, I introduce an effective way to detect 

collusive spammers by dividing users into smaller communities based on 

their behavioral collusiveness. From user communities, I extracted features 

related to their activeness and anomalies, and from individual behavior, I 

extracted time-based features and rating-based features. Also, I proposed a 

supervised classification method using features related to community 

behavior and individual behavior. From the analysis using a real-world 

dataset, my method outperformed previous state-of-the-art methods 

especially by showing a higher recall. From the analysis of parameter 

selection, I showed that my proposed scheme could be used flexibly in 

other domains, by not requiring linguistic data and providing learnable 

parameters. My research shows the importance of considering 

collusiveness in review spam detection, by showing significant 

improvements in a real-world dataset. 

 While I utilized some useful features from the constructed community 

graph, there would be more information in the graph itself. I would expect the 

improvement if I consider more detailed approaches such as network 



 

６３ 

 

embedding in a deep neural network. Also, my research on detecting 

collusiveness can be used to solve various problems which are getting 

concerns in social media, such as conflicts in online communities, 

cyberbullying on the social network service, and so forth. 

 

Chapter 4 Conclusion  

In this paper, I proposed ANES and SC-Com, which utilizes and detect 

social relation of users in online platforms. ANES performs representation 

learning on User-POI check-in data for unsupervised social link inference. I 

design the aspect-oriented relationship between users and POIs to learn 

both the pairwise relation and network structures. From extensive 

experiments, I show ANES is superior to other state-of-the-art methods by 

showing the result of the unsupervised link prediction task.  

SC-Com extracted features from users review data related to their 

activeness and anomalies. From individual behavior, I extracted time-based 

features and rating-based features. After that, I proposed a supervised 

classification method using features related to community behavior and 

individual behavior. From the analysis using a real-world dataset, SC-Com 

outperformed previous state-of-the-art methods especially by showing a 

higher recall. 
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초 록 

웹 기반 서비스의 폭발적인 발달로 사용자들은 온라인 상에서 폭넓게 

연결되고 있다. 온라인 플랫폼 상에서, 사용자들은 서로에게 영향을 

주고받으며 의사 결정에 그들의 경험과 의견을 반영하는 경향을 보인다. 

본 학위 논문에서는 대표적인 온라인 플랫폼인 소셜 네트워크 서비스와 

이커머스 플랫폼에서의 사용자 행동에 대해 연구하였다. 

온라인 플랫폼에서의 사용자 행동은 사용자와 플랫폼 구성 요소 간의 

관계로 표현할 수 있다. 사용자의 구매는 사용자와 상품 간의 관계로, 

사용자의 체크인은 사용자와 장소 간의 관계로 나타내진다. 여기에 

행동의 시간과 레이팅, 태그 등의 정보가 포함될 수 있다. 

본 연구에서는 두 플랫폼에서 정의된 사용자의 행동 그래프에 영향을 

미치는 잠재 네트워크를 파악하는 연구를 제시한다. 위치 기반의 소셜 

네트워크 서비스의 경우 특정 장소에 방문하는 체크인 형식으로 많은 

포스트가 만들어지는데, 사용자의 장소 방문은 사용자 간에 사전에 

존재하는 친구 관계에 의해 영향을 크게 받는다. 사용자 활동 

네트워크의 저변에 잠재된 사용자 간의 관계를 파악하는 것은 활동 

예측에 도움이 될 수 있으며, 이를 위해 본 논문에서는 비지도학습 

기반으로 활동 네트워크로부터 사용자 간 사회적 관계를 추출하는 

연구를 제안하였다. 

기존에 연구되었던 방법들은 두 사용자가 동시에 방문하는 행위인 

co-visitation 을 중점적으로 고려하여 사용자 간의 관계를 예측하거나, 
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네트워크 임베딩 또는 그래프 신경망(GNN)을 사용하여 표현 학습을 

수행하였다. 그러나 이러한 접근 방식은 주기적인 방문이나 장거리 이동 

등으로 대표되는 사용자의 행동 패턴을 잘 포착하지 못한다. 행동 

패턴을 더 잘 학습하기 위해, ANES 는 사용자 컨텍스트 내에서 

사용자와 관심 지점(POI) 간의 측면(Aspect) 지향 관계를 학습한다. 

ANES 는 User-POI 이분 그래프의 구조에서 사용자의 행동을 여러 

개의 측면으로 나누고, 각각의 관계를 고려하여 행동 패턴을 추출하는 

최초의 비지도학습 기반 접근 방식이다. 실제 LBSN 데이터에서 수행된 

광범위한 실험에서, ANES 는 기존에 제안되었던 기법들보다 높은 

성능을 보여준다. 

위치 기반 소셜 네트워크와는 다르게, 이커머스의 리뷰 시스템에서는 

사용자들이 능동적인 팔로우/팔로잉 등의 행위를 수행하지 않고도 

플랫폼에 의해 서로의 정보를 주고받고 영향력을 행사하게 된다. 이와 

같은 사용자들의 행동 특성은 리뷰 스팸에 의해 쉽게 악용될 수 있다. 

리뷰 스팸은 실제 사용자의 의견을 숨기고 평점을 조작하여 잘못된 

정보를 전달하는 방식으로 이루어진다. 나는 이를 해결하기 위해 사용자 

리뷰 데이터에서 사용자 간 사전 공모성(Collusiveness)의 가능성을 

찾고, 이를 스팸 탐지에 활용한 방법인 SC-Com 을 제안한다. SC-

Com 은 행동의 공모성으로부터 사용자 간 공모 점수를 계산하고 해당 

점수를 바탕으로 전체 사용자를 유사한 사용자들의 커뮤니티로 분류한다. 

그 후 스팸 유저와 일반 유저를 구별하는 데에 중요한 그래프 기반의 

특징을 추출하여 감독 학습 기반의 분류기의 입력 데이터로 활용하는 

방법을 제시한다. SC-Com 은 공모성을 갖는 스팸 유저의 집합을 
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효과적으로 탐지한다. 실제 데이터셋을 이용한 실험에서, SC-Com 은 

기존 논문들 대비 스팸 탐지에 뛰어난 성능을 보여주었다. 

위 논문에서 다양한 데이터에 대해 연구된 암시적 연결망 탐지 모델은 

레이블이 없는 데이터에 대해서도 사전에 연결되었을 가능성이 높은 

사용자들을 예측하므로, 실시간 위치 데이터나, 앱 사용 데이터 등의 

다양한 데이터에서 활용할 수 있는 유용한 정보를 제공하여 광고 추천 

시스템이나, 악성 유저 탐지 등의 분야에서 기여할 수 있을 것으로 

기대한다. 

 

주요어: 소셜 네트워크 분석, 스팸 탐지, 그래프 학습, 사회적 링크 
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