62 research outputs found

    Millimeter Wave Ad Hoc Networks: Noise-limited or Interference-limited?

    Full text link
    In millimeter wave (mmWave) communication systems, narrow beam operations overcome severe channel attenuations, reduce multiuser interference, and thus introduce the new concept of noise-limited mmWave wireless networks. The regime of the network, whether noise-limited or interference-limited, heavily reflects on the medium access control (MAC) layer throughput and on proper resource allocation and interference management strategies. Yet, alternating presence of these regimes and, more importantly, their dependence on the mmWave design parameters are ignored in the current approaches to mmWave MAC layer design, with the potential disastrous consequences on the throughput/delay performance. In this paper, tractable closed-form expressions for collision probability and MAC layer throughput of mmWave networks, operating under slotted ALOHA and TDMA, are derived. The new analysis reveals that mmWave networks may exhibit a non-negligible transitional behavior from a noise-limited regime to an interference-limited regime, depending on the density of the transmitters, density and size of obstacles, transmission probability, beamwidth, and transmit power. It is concluded that a new framework of adaptive hybrid resource allocation procedure, containing a proactive contention-based phase followed by a reactive contention-free one with dynamic phase durations, is necessary to cope with such transitional behavior.Comment: accepted in IEEE GLOBECOM'1

    Exploiting Regional Differences: A Spatially Adaptive Random Access

    Full text link
    In this paper, we discuss the potential for improvement of the simple random access scheme by utilizing local information such as the received signal-to-interference-plus-noise-ratio (SINR). We propose a spatially adaptive random access (SARA) scheme in which the transmitters in the network utilize different transmit probabilities depending on the local situation. In our proposed scheme, the transmit probability is adaptively updated by the ratio of the received SINR and the target SINR. We investigate the performance of the spatially adaptive random access scheme. For the comparison, we derive an optimal transmit probability of ALOHA random access scheme in which all transmitters use the same transmit probability. We illustrate the performance of the spatially adaptive random access scheme through simulations. We show that the performance of the proposed scheme surpasses that of the optimal ALOHA random access scheme and is comparable with the CSMA/CA scheme.Comment: 10 pages, 10 figure

    The Outage Probability of a Finite Ad Hoc Network in Nakagami Fading

    Full text link
    An ad hoc network with a finite spatial extent and number of nodes or mobiles is analyzed. The mobile locations may be drawn from any spatial distribution, and interference-avoidance protocols or protection against physical collisions among the mobiles may be modeled by placing an exclusion zone around each radio. The channel model accounts for the path loss, Nakagami fading, and shadowing of each received signal. The Nakagami m-parameter can vary among the mobiles, taking any positive value for each of the interference signals and any positive integer value for the desired signal. The analysis is governed by a new exact expression for the outage probability, defined to be the probability that the signal-to-interference-and-noise ratio (SINR) drops below a threshold, and is conditioned on the network geometry and shadowing factors, which have dynamics over much slower timescales than the fading. By averaging over many network and shadowing realizations, the average outage probability and transmission capacity are computed. Using the analysis, many aspects of the network performance are illuminated. For example, one can determine the influence of the choice of spreading factors, the effect of the receiver location within the finite network region, and the impact of both the fading parameters and the attenuation power laws.Comment: to appear in IEEE Transactions on Communication

    Outage Probability in Arbitrarily-Shaped Finite Wireless Networks

    Full text link
    This paper analyzes the outage performance in finite wireless networks. Unlike most prior works, which either assumed a specific network shape or considered a special location of the reference receiver, we propose two general frameworks for analytically computing the outage probability at any arbitrary location of an arbitrarily-shaped finite wireless network: (i) a moment generating function-based framework which is based on the numerical inversion of the Laplace transform of a cumulative distribution and (ii) a reference link power gain-based framework which exploits the distribution of the fading power gain between the reference transmitter and receiver. The outage probability is spatially averaged over both the fading distribution and the possible locations of the interferers. The boundary effects are accurately accounted for using the probability distribution function of the distance of a random node from the reference receiver. For the case of the node locations modeled by a Binomial point process and Nakagami-mm fading channel, we demonstrate the use of the proposed frameworks to evaluate the outage probability at any location inside either a disk or polygon region. The analysis illustrates the location dependent performance in finite wireless networks and highlights the importance of accurately modeling the boundary effects.Comment: accepted to appear in IEEE Transactions on Communication
    • …
    corecore