2,541 research outputs found

    A Framework for Group Modeling in Agent-Based Pedestrian Crowd Simulations

    Get PDF
    Pedestrian crowd simulation explores crowd behaviors in virtual environments. It is extensively studied in many areas, such as safety and civil engineering, transportation, social science, entertainment industry and so on. As a common phenomenon in pedestrian crowds, grouping can play important roles in crowd behaviors. To achieve more realistic simulations, it is important to support group modeling in crowd behaviors. Nevertheless, group modeling is still an open and challenging problem. The influence of groups on the dynamics of crowd movement has not been incorporated into most existing crowd models because of the complexity nature of social groups. This research develops a framework for group modeling in agent-based pedestrian crowd simulations. The framework includes multiple layers that support a systematic approach for modeling social groups in pedestrian crowd simulations. These layers include a simulation engine layer that provides efficient simulation engines to simulate the crowd model; a behavior-based agent modeling layers that supports developing agent models using the developed BehaviorSim simulation software; a group modeling layer that provides a well-defined way to model inter-group relationships and intra-group connections among pedestrian agents in a crowd; and finally a context modeling layer that allows users to incorporate various social and psychological models into the study of social groups in pedestrian crowd. Each layer utilizes the layer below it to fulfill its functionality, and together these layers provide an integrated framework for supporting group modeling in pedestrian crowd simulations. To our knowledge this work is the first one to focus on a systematic group modeling approach for pedestrian crowd simulations. This systematic modeling approach allows users to create social group simulation models in a well-defined way for studying the effect of social and psychological factors on crowd’s grouping behavior. To demonstrate the capability of the group modeling framework, we developed an application of dynamic grouping for pedestrian crowd simulations

    Overview of crowd simulation in computer graphics

    Get PDF
    High-powered technology use computer graphics in education, entertainment, games, simulation, and virtual heritage applications has led it to become an important area of research. In simulation, according to Tecchia et al. (2002), it is important to create an interactive, complex, and realistic virtual world so that the user can have an immersive experience during navigation through the world. As the size and complexity of the environments in the virtual world increased, it becomes more necessary to populate them with peoples, and this is the reason why rendering the crowd in real-time is very crucial. Generally, crowd simulation consists of three important areas. They are realism of behavioral (Thompson and Marchant 1995), high-quality visualization (Dobbyn et al. 2005) and convergence of both areas. Realism of behavioral is mainly used for simple 2D visualizations because most of the attentions are concentrated on simulating the behaviors of the group. High quality visualization is regularly used for movie productions and computer games. It gives intention on producing more convincing visual rather than realism of behaviors. The convergences of both areas are mainly used for application like training systems. In order to make the training system more effective, the element of valid replication of the behaviors and high-quality visualization is added

    Quickest Paths in Simulations of Pedestrians

    Full text link
    This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic walk approximately along a path of estimated minimal remaining travel time to their destination. Usually models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into personal space do not produce motion on quickest paths. Therefore a special model element is needed, if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a station hall who are late for a train). Here such a model element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte
    corecore