24,991 research outputs found

    Supporting the automated generation of modular product line safety cases

    Get PDF
    Abstract The effective reuse of design assets in safety-critical Software Product Lines (SPL) would require the reuse of safety analyses of those assets in the variant contexts of certification of products derived from the SPL. This in turn requires the traceability of SPL variation across design, including variation in safety analysis and safety cases. In this paper, we propose a method and tool to support the automatic generation of modular SPL safety case architectures from the information provided by SPL feature modeling and model-based safety analysis. The Goal Structuring Notation (GSN) safety case modeling notation and its modular extensions supported by the D-Case Editor were used to implement the method in an automated tool support. The tool was used to generate a modular safety case for an automotive Hybrid Braking System SPL

    A Framework for Design and Composition of Semantic Web Services

    Get PDF
    Semantic Web Services (SWS) are Web Services (WS) whose description is semantically enhanced with markup languages (e.g., OWL-S). This semantic description will enable external agents and programs to discover, compose and invoke SWSs. However, as a previous step to the specification of SWSs in a language, it must be designed at a conceptual level to guarantee its correctness and avoid inconsistencies among its internal components. In this paper, we present a framework for design and (semi) automatic composition of SWSs at a language-independent and knowledge level. This framework is based on a stack of ontologies that (1) describe the different parts of a SWS; and (2) contain a set of axioms that are really design rules to be verified by the ontology instances. Based on these ontologies, design and composition of SWSs can be viewed as the correct instantiation of the ontologies themselves. Once these instances have been created they will be exported to SWS languages such as OWL-S

    A Systematic Review of Tracing Solutions in Software Product Lines

    Get PDF
    Software Product Lines are large-scale, multi-unit systems that enable massive, customized production. They consist of a base of reusable artifacts and points of variation that provide the system with flexibility, allowing generating customized products. However, maintaining a system with such complexity and flexibility could be error prone and time consuming. Indeed, any modification (addition, deletion or update) at the level of a product or an artifact would impact other elements. It would therefore be interesting to adopt an efficient and organized traceability solution to maintain the Software Product Line. Still, traceability is not systematically implemented. It is usually set up for specific constraints (e.g. certification requirements), but abandoned in other situations. In order to draw a picture of the actual conditions of traceability solutions in Software Product Lines context, we decided to address a literature review. This review as well as its findings is detailed in the present article.Comment: 22 pages, 9 figures, 7 table

    Helping Naive Users to Reuse Ontology Design Patterns

    Get PDF
    The decisive launching of the Semantic Web depends on two key factors: the design of sound methodologies for guiding users in the reuse of available knowledge resources that speed up the ontology development, and the suitability of those methodologies for an average user. In this paper we propose a method for the reuse of ontology design patterns aimed at users with little expertise in ontology development, i.e. naive users. The method workflow is explained in the light of some examples of reuse of logical ontology design patterns: the SubClassOf relation, Exhaustive Classes and Disjoint Classes patterns

    Towards a flexible open-source software library for multi-layered scholarly textual studies: An Arabic case study dealing with semi-automatic language processing

    Get PDF
    This paper presents both the general model and a case study of the Computational and Collaborative Philology Library (CoPhiLib), an ongoing initiative underway at the Institute for Computational Linguistics (ILC) of the National Research Council (CNR), Pisa, Italy. The library, designed and organized as a reusable, abstract and open-source software component, aims at solving the needs of multi-lingual and cross-lingual analysis by exposing common Application Programming Interfaces (APIs). The core modules, coded by the Java programming language, constitute the groundwork of a Web platform designed to deal with textual scholarly needs. The Web application, implemented according to the Java Enterprise specifications, focuses on multi-layered analysis for the study of literary documents and related multimedia sources. This ambitious challenge seeks to obtain the management of textual resources, on the one hand by abstracting from current language, on the other hand by decoupling from the specific requirements of single projects. This goal is achieved thanks to methodologies declared by the 'agile process', and by putting into effect suitable use case modeling, design patterns, and component-based architectures. The reusability and flexibility of the system have been tested on an Arabic case study: the system allows users to choose the morphological engine (such as AraMorph or Al-Khalil), along with linguistic granularity (i.e. with or without declension). Finally, the application enables the construction of annotated resources for further statistical engines (training set). © 2014 IEEE
    • …
    corecore