3,612 research outputs found

    A Low Cost and Computationally Efficient Approach for Occlusion Handling in Video Surveillance Systems

    Get PDF
    In the development of intelligent video surveillance systems for tracking a vehicle, occlusions are one of the major challenges. It becomes difficult to retain features during occlusion especially in case of complete occlusion. In this paper, a target vehicle tracking algorithm for Smart Video Surveillance (SVS) is proposed to track an unidentified target vehicle even in case of occlusions. This paper proposes a computationally efficient approach for handling occlusions named as Kalman Filter Assisted Occlusion Handling (KFAOH) technique. The algorithm works through two periods namely tracking period when no occlusion is seen and detection period when occlusion occurs, thus depicting its hybrid nature. Kanade-Lucas-Tomasi (KLT) feature tracker governs the operation of algorithm during the tracking period, whereas, a Cascaded Object Detector (COD) of weak classifiers, specially trained on a large database of cars governs the operation during detection period or occlusion with the assistance of Kalman Filter (KF). The algorithm’s tracking efficiency has been tested on six different tracking scenarios with increasing complexity in real-time. Performance evaluation under different noise variances and illumination levels shows that the tracking algorithm has good robustness against high noise and low illumination. All tests have been conducted on the MATLAB platform. The validity and practicality of the algorithm are also verified by success plots and precision plots for the test cases

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Crowd detection and counting using a static and dynamic platform: state of the art

    Get PDF
    Automated object detection and crowd density estimation are popular and important area in visual surveillance research. The last decades witnessed many significant research in this field however, it is still a challenging problem for automatic visual surveillance. The ever increase in research of the field of crowd dynamics and crowd motion necessitates a detailed and updated survey of different techniques and trends in this field. This paper presents a survey on crowd detection and crowd density estimation from moving platform and surveys the different methods employed for this purpose. This review category and delineates several detections and counting estimation methods that have been applied for the examination of scenes from static and moving platforms

    DESIGN FRAMEWORK FOR INTERNET OF THINGS BASED NEXT GENERATION VIDEO SURVEILLANCE

    Get PDF
    Modern artificial intelligence and machine learning opens up new era towards video surveillance system. Next generation video surveillance in Internet of Things (IoT) environment is an emerging research area because of high bandwidth, big-data generation, resource constraint video surveillance node, high energy consumption for real time applications. In this thesis, various opportunities and functional requirements that next generation video surveillance system should achieve with the power of video analytics, artificial intelligence and machine learning are discussed. This thesis also proposes a new video surveillance system architecture introducing fog computing towards IoT based system and contributes the facilities and benefits of proposed system which can meet the forthcoming requirements of surveillance. Different challenges and issues faced for video surveillance in IoT environment and evaluate fog-cloud integrated architecture to penetrate and eliminate those issues. The focus of this thesis is to evaluate the IoT based video surveillance system. To this end, two case studies were performed to penetrate values towards energy and bandwidth efficient video surveillance system. In one case study, an IoT-based power efficient color frame transmission and generation algorithm for video surveillance application is presented. The conventional way is to transmit all R, G and B components of all frames. Using proposed technique, instead of sending all components, first one color frame is sent followed by a series of gray-scale frames. After a certain number of gray-scale frames, another color frame is sent followed by the same number of gray-scale frames. This process is repeated for video surveillance system. In the decoder, color information is formulated from the color frame and then used to colorize the gray-scale frames. In another case study, a bandwidth efficient and low complexity frame reproduction technique that is also applicable in IoT based video surveillance application is presented. Using the second technique, only the pixel intensity that differs heavily comparing to previous frame’s corresponding pixel is sent. If the pixel intensity is similar or near similar comparing to the previous frame, the information is not transferred. With this objective, the bit stream is created for every frame with a predefined protocol. In cloud side, the frame information can be reproduced by implementing the reverse protocol from the bit stream. Experimental results of the two case studies show that the IoT-based proposed approach gives better results than traditional techniques in terms of both energy efficiency and quality of the video, and therefore, can enable sensor nodes in IoT to perform more operations with energy constraints
    corecore