4 research outputs found

    Adaptive Fractional-Order Sliding Mode Controller with Neural Network Compensator for an Ultrasonic Motor

    Full text link
    Ultrasonic motors (USMs) are commonly used in aerospace, robotics, and medical devices, where fast and precise motion is needed. Remarkably, sliding mode controller (SMC) is an effective controller to achieve precision motion control of the USMs. To improve the tracking accuracy and lower the chattering in the SMC, the fractional-order calculus is introduced in the design of an adaptive SMC in this paper, namely, adaptive fractional-order SMC (AFOSMC), in which the bound of the uncertainty existing in the USMs is estimated by a designed adaptive law. Additionally, a short memory principle is employed to overcome the difficulty of implementing the fractional-order calculus on a practical system in real-time. Here, the short memory principle may increase the tracking errors because some information is lost during its operation. Thus, a compensator according to the framework of Bellman's optimal control theory is proposed so that the residual errors caused by the short memory principle can be attenuated. Lastly, experiments on a USM are conducted, which comparative results verify the performance of the designed controller.Comment: 9 pages, 9 figure

    Machine learning to empower electrohydrodynamic processing

    Get PDF
    Electrohydrodynamic (EHD) processes are promising healthcare fabrication technologies, as evidenced by the number of commercialised and food-and-drug administration (FDA)-approved products produced by these processes. Their ability to produce both rapidly and precisely nano-sized products provides them with a unique set of qualities that cannot be matched by other fabrication technologies. Consequently, this has stimulated the development of EHD processing to tackle other healthcare challenges. However, as with most technologies, time and resources will be needed to realise fully the potential EHD processes can offer. To address this bottleneck, researchers are adopting machine learning (ML), a subset of artificial intelligence, into their workflow. ML has already made ground-breaking advancements in the healthcare sector, and it is anticipated to do the same in the materials domain. Presently, the application of ML in fabrication technologies lags behind other sectors. To that end, this review showcases the progress made by ML for EHD workflows, demonstrating how the latter can benefit greatly from the former. In addition, we provide an introduction to the ML pipeline, to help encourage the use of ML for other EHD researchers. As discussed, the merger of ML with EHD has the potential to expedite novel discoveries and to automate the EHD workflow
    corecore