
Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology

Rose-Hulman Scholar Rose-Hulman Scholar

Graduate Theses - Mechanical Engineering Graduate Theses

6-27-2022

Predicting Joint Mechanics using sEMG and Deep Neural Predicting Joint Mechanics using sEMG and Deep Neural

Networks Networks

Heath James Staley Boyea

Follow this and additional works at: https://scholar.rose-hulman.edu/

mechanical_engineering_grad_theses

 Part of the Mechanical Engineering Commons

https://scholar.rose-hulman.edu/
https://scholar.rose-hulman.edu/mechanical_engineering_grad_theses
https://scholar.rose-hulman.edu/grad_theses
https://scholar.rose-hulman.edu/mechanical_engineering_grad_theses?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/mechanical_engineering_grad_theses?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholar.rose-hulman.edu%2Fmechanical_engineering_grad_theses%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages

Predicting Joint Mechanics using sEMG and Deep Neural Networks

A Thesis

Submitted to the Faculty

of

Rose-Hulman Institute of Technology

by

Heath James Staley Boyea

In Partial Fulfillment of the requirements for the degree

of

Master of Science in Mechanical Engineering

June 2022

©2022 Heath James Staley Boyea

ABSTRACT

Boyea, Heath James Staley

M.S.M.E.

Rose-Hulman Institute of Technology

June 2022

Predicting Joint Mechanics using sEMG and Deep Neural Networks

Thesis Advisor: Dr. J. Miles Canino

According to the Center for Disease Control (CDC), 1 in 7 American adults are affected

by disabilities that affect mobility [1]. Assistive devices, such as exoskeletons, may be able to

assist affected individuals. Though these devices may be helpful, constant assistance can create

dependence on the device. We hypothesize that an assist-as-needed control system can be

developed to aid the wearer only when necessary. To develop an assist-as-needed control system,

it needs to be determined when assistance is needed and the magnitude of this assistance. We

hypothesize that an artificial neural network (ANN) can predict future normal torque outputs of

joints given past joint angles, torques, and sEMG data of the governing muscles. Actual torque

outputs can then be extrapolated from sensor data and the difference in these torque values can

be determined to be the required assistance magnitude. To evaluate this method, a dataset of 10

subjects walking at 7 speeds was ascertained [3]. This dataset included pelvis, hip, knee, and

ankle torque and angle about the 3 major axes across 3 strides at each walking speed. The surface

electromyography data (sEMG) of the Tibialis Anterior (TA), Gastrocnemius Lateralis (GAL),

Biceps Femoris (BF) and Vastus Lateralis (VL) were also collected for each subject during each

stride. The first step in this investigation was to evaluate this method on a single and multi-joint

system while considering the sEMG activity of the pertinent muscles. A multi-joint system could

then be evaluated when not all governing sEMG data can be measured. Finally, a principal

component analysis could be performed on this multi-joint system to evaluate the contribution of

each feature in the training outcomes of the ANNs. This allowed the researcher to reduce the

order of this system while still maintaining prediction accuracy. Features that contribute the most

to prediction accuracy could be retained and the others could be removed to simplify the

network, reducing training time, testing time, and hardware complexity. These results of this

research will be used to inform future development of assist-as-needed devices.

ACKNOWLEDGEMENTS

 I would like to thank my committee members, Dr. Lui, Dr. Bercich, and Dr. Chiu, who

contributed their diverse and valuable knowledge to help make this interdisciplinary research

possible.

I would also like to thank Dr. Canino, my advisor, for his role in advising, inspiring, and

guiding, me on my journey through academia. Since advising me through my undergraduate

degree, he has been the largest contributor to my pursuit of higher learning. Without his

influence, I would not be on my current path.

Finally, I would like to thank my mother for always encouraging me to follow my dreams

and do what I feel is right, not what is easy. From a young age, she embraced and encouraged my

curiosity, creativity, and interest in everything mechanical. From lawn mowers to

decommissioned fighter jets, she showed me the systems that would continue to drive my

engineering interest throughout the rest of my life. Her guidance has helped forge my personal

ethos and has made me the man I am today.

ii

TABLE OF CONTENTS

Contents

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

LIST OF ABBREVIATIONS ..v

1. INTRODUCTION ..6

2. BACKGROUND ...9

3. SINGLE-JOINT SYSTEM... 15

4. MULTI-JOINT SYSTEM .. 33

5. NETWORK SIMPLIFICATION AND REDUCTION OF ORDER.......................... 60

6. CONCLUSION ... 70

7. FUTURE WORK ... 71

APPENDICIES .. 72

LIST OF REFERENCES .. 110

iii

LIST OF FIGURES

Figure 2.1: Coker et al. sEMG Sensor and Retroreflective Marker Placement ……………………………………………………………….10

Figure 2.2: Moreira et al. sEMG Sensor Placement…………………………………………………………………………………………….. 12

Figure 2.3: Moreira et al. Retroreflective Sensor Placement…………………………………………………………………………………… 13

Figure 2.4: Moreira et al. Experimental gait course…………………………………………………………………………………………….. 14

Figure 3.2.1: Knee-only Nonlinear Input-Output Time Series Neural Network………….………………….……………………………….. 16

Figure 3.2.2: Bicep Femoris and Vastus Lateralis Location…………………….……………………………………………………………... 18

Figure 3.2.3: Time-Shifted Stride Data Illustration…………...………………………….……………………………………………….……. 20

Figure 3.2.4: Input-Error Cross-Correlation with an Input Lag of 2 Timesteps…………….………………………………………….……. 22

Figure 3.3.1: 50 ms Knee-Only Network Prediction vs. Actual Future Data …………………………………………………………………. 25

Figure 3.3.2: 100 ms Knee-Only Network Prediction vs. Actual Future Data ……………………….………...……………………………... 25

Figure 3.3.3: 150 ms Knee-Only Network Prediction vs. Actual Future Data ………………………………………………………………... 26

Figure 3.3.4: 50 ms Knee-Only Network Grand Average Prediction Error …………….……………………………………………………..27

Figure 3.3.5: 100 ms Knee-Only Network Grand Average Prediction Error……………………………………………….………………… 28

Figure 3.3.5: 150 ms Knee-Only Network Grand Average Prediction Error ………………………………………………………………… 29

Figure 4.2.1: Knee-Ankle Nonlinear Input-Output Time Series Neural Network …………………………..………………………………...34

Figure 4.2.2: Gastrocnemius Lateralis and Tibialis Anterior Location……………………………………………………………………….. 35

Figure 4.2.3: Knee-Ankle-Hip Nonlinear Input-Output Time Series Neural Network ……………………………..……………………….. 37

Figure 4.3.1: 50 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Torque……………………………………...…...………... 41

Figure 4.3.2: 50 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Angle………………………….……………..………..…... 41

Figure 4.3.3: 100 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Angle …………………………….…………..………..… 42

Figure 4.3.4: 100 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Torque ……………………………………………….…. 42

Figure 4.3.5: 150 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Angle …………………..………….…..………………… 43

Figure 4.3.6: 150 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Torque ………………………..….……………..………. 43

Figure 4.3.7: 50 ms Knee-Ankle Network Grand Average Prediction Error ……………………………………………………………..….. 44

Figure 4.3.8: 100 ms Knee-Ankle Network Grand Average Prediction Error ………………………………………..……………………… 45

Figure 4.3.9: 150 ms Knee-Ankle Network Grand Average Prediction Error…………………………………………………………………46

Figure 4.4.1: 50 ms Knee-Ankle-Hip Network Predicted vs. Actual Knee, Ankle, and Hip Torque………………………...……...……….. 51

Figure 4.4.2: 50 ms Knee-Ankle-Hip Network Predicted vs. Actual Knee, Ankle, and Hip Angle……………………………...……..…….. 51

Figure 4.4.3: 100 ms Knee-Ankle-Hip Network Predicted vs. Actual Knee, Hip, and Ankle Angle…………………..……...………….…... 52

Figure 4.4.4: 100 ms Knee-Ankle-Hip Network Predicted vs. Actual Knee, Hip, and Ankle Torque …………………………………….… 52

Figure 4.4.5: 150 ms Knee-Ankle-Hip Network Predicted vs. Actual Knee, Hip, and Ankle Angle ……………………………………….... 53

Figure 4.4.6: 150 ms Knee-Ankle-Hip Network Predicted vs. Actual Knee, Hip, and Ankle Torque ………………………………….…… 53

Figure 4.4.7: 50 ms Knee-Ankle-Hip Network Prediction Grand Average Error ………………………………………..………………….. 54

Figure 4.4.8: 100 ms Knee-Ankle-Hip Network Prediction Grand Average Error ………………………………..……..………………….. 56

Figure 4.4.9: 150 ms Knee-Ankle-Hip Network Prediction Grand Average Error ……………………………..………..………………….. 57

Figure 5.2.1: sEMG-Free Nonlinear Input-Output Time Series Neural Network …………………………………………..……………….. 62

iv

LIST OF TABLES

Table 2.1: Coker et al. Knee Angle Prediction Error………………………………………...11

Table 3.2.1: NIOTSNN Stop Conditions ………………………………………….……………………………………….….....17

Equation 3.1: Prediction Horizon to Entry Offset Conversion……………………………………………........................…...19

Table 3.3.1: Knee-Only Network Knee Angle Prediction RMSE (Degrees)………………...……………………………..….23

Table 3.3.2: Knee-only Network Knee Torque Prediction RMSE (N-m)………………………...……………………....……24

Table 3.4.1: Knee Angle Prediction RMSE vs Coker et al. Knee Angle Prediction RMSE……………………………….….30

Table 4.3.1: Knee-Ankle Network Knee Angle Prediction RMSE (Degrees))………………………….……………….…….38

Table 4.3.2: Knee-Ankle Network Knee Torque Prediction RMSE (N-m))………………………….....…………………..…39

Table 4.3.3: Knee-Ankle Network Ankle Angle Prediction RMSE (Degrees)……………...…………………………….…...39

Table 4.3.4: Knee-Ankle Network Ankle Torque Prediction RMSE (N-m)………………………………………….…….….40

Table 4.4.1: Knee-Ankle-Hip Network Knee Torque Prediction RMSE (N-m) …………..……………...………………..…47

Table 4.4.2: Knee-Ankle-Hip Network Knee Angle Prediction RMSE (Degrees)……………………..……………….…….48

Table 4.4.3: Knee-Ankle-Hip Network Ankle Torque Prediction RMSE (N-m)……………………..………………….…...48

Table 4.4.4: Knee-Ankle-Hip Network Ankle Angle Prediction RMSE (Degrees)…………………..…………………..…...49

Table 4.4.5: Knee-Ankle-Hip Network Hip Torque Prediction RMSE (N-m)………………………..…………………..…..49

Table 4.4.6: Knee-Ankle-Hip Network Hip Angle Prediction RMSE (Degrees)……………………………………….…..…50

Table 5.3.1: sEMG-Free Network Knee Torque Prediction RMSE (N-m) …………...………….…………………….……..64

Table 5.3.2: sEMG-Free Network Knee Angle Prediction RMSE (Degrees)…………………………..………………….…..65

Table 5.3.3: sEMG-Free Network Ankle Torque Prediction RMSE (N-m)……..………………………………………….…65

Table 5.3.4: sEMG-Free Network Ankle Angle Prediction RMSE (Degrees)…………..………………………………….….66

Table 5.3.5: sEMG-Free Network Hip Torque Prediction RMSE (N-m)……………….………………………………….….66

Table 5.3.6: sEMG-Free Network Hip Angle Prediction RMSE (Degrees)…………………………………………………...67

Table 5.3.7: Principal Component Coefficients for Knee-Ankle-Hip Data………………………….…………………….…..68

Table 5.3.8: Principal Component Variance Contribution for Knee-Ankle-Hip Data…………………..………………...…68

Table 5.4.1: Simplified Network Average RMSE Across All Subjects……………………………………………………..….69

Table 5.4.2: Ardestani et al. Torque Prediction with WNN and FFANN vs. NIOTSNN Torque Prediction.........................70

v

LIST OF ABBREVIATIONS

Center for Disease Control-CDC

Parkinson’s Disease-PD

Cerebral Palsy-CP

Amyotrophic Lateral Sclerosis-ALS

Essential Tremors-ET

Huntington’s Disease-HD

Muscular Dystrophy-MD

Electromyography-EMG

Surface Electromyography-sEMG

artificial neural network- ANN

Nonlinear Input-Output Time Series Neural Network -NIOTSNN

Root mean square error- RMSE

Analysis of variance- ANOVA

Tibialis Anterior- TA

Gastrocnemius Lateralis-GAL

Biceps Femoris-BF

Vastus Lateralis-VL

Ground Reaction Forces-GRF

Center of Pressure-CoP

Force Platforms Moments-FPMs

Principal Component Analysis-PCA

Wavelet Neural Network-WNN

6

1. INTRODUCTION

 According to the Center for Disease Control (CDC), 1 in 7 American adults are affected

by disabilities that affect mobility [1]. Some of these conditions deal with mechanical limitations

such as Arthritis, tendon damage, and bone fractures while others, such as Parkinson’s Disease

(PD), Cerebral Palsy (CP), Amyotrophic Lateral Sclerosis (ALS), Essential Tremors (ET),

Huntington’s Disease (HD), and Muscular Dystrophy (MD) deals with an uncontrolled,

involuntary movement, or Dyskinesia. In recent history, the field of Rehabilitation Robotics has

sought to develop devices to rehabilitate or permanently assist individuals afflicted by these

conditions. Of these technologies, exoskeletons are among the most prolific.

 Assistive exoskeletons often come as one of two types, hard or soft. Hard exoskeletons

are rigid devices that provide both structure and actuation for the user [4]. These devices have

been shown to be useful in hospitals and rehabilitation clinics. These devices can help facilitate

specific rehabilitation routines that have been shown to produce favorable rehabilitation

outcomes [6]. These systems can also be useful in cases where the user cannot provide any, very

little, or voluntary muscular input, such as paralysis from spinal cord injury or stroke and MD

[5]. They are often heavy and lack biomechanical compliance, though in some cases this can be

favorable. This increases the inertia of the limb making the devices often cumbersome. This

trend can make hard exoskeletons unrealistic for everyday use for many individuals who

maintain limited, voluntary muscle control.

 Soft exoskeletons, on the other hand, are compliant devices that provide little structural

support while providing assistive actuation to the user [4]. Like their hard counterparts, soft

exoskeletons can assist in performing desired movements for rehabilitation purposes or daily

tasks. Since soft exoskeletons do not require a rigid structure, they can be comprised of flexible

7

materials such as textiles and flexible polymers. Actuators can also be moved off from the device

to a remote location such as a backpack. Actuation can be performed through remote lines such

as Bowden cables [7] or pneumatic actuators [12]. This results in soft exoskeletons adding

significantly less inertia to the affected limb and maintaining significantly higher biomechanical

compliance. These two factors result in soft exoskeletons allowing a much more natural range of

motion and movement dynamics.

 Apart from the design of exoskeleton hardware, Rehabilitation Robotics is highly focused

on the control systems of these exoskeleton systems. The control paradigm for these systems

depends wholly on their intended use. Many assistive devices require the ability to anticipate a

user’s intended movement. This results in a large sector of Rehabilitation Robotics research

being centered around intent recognition. Much of this is necessary for paralyzed individuals or

those missing limbs entirely. On the other hand, A user’s intent may or may not need to be taken

into consideration. For example, if a user can move voluntarily but with a limited capacity their

movement may only need to be identified for assistance to be provided. For many users that do

not suffer from Paralysis or Dyskinesia, this is the case.

 Assist-as-needed control paradigms can be preferential over constant assistance in some

applications. This control paradigm allows for a system to assist only when and at the amplitude

necessary for the user to complete the intended action. This encourages rehabilitation,

discourages dependence on the device, and reduces power consumption and required force

output. There is a multitude of philosophies used while attempting to tackle this problem. The

leaps in machine learning over recent years have given scientist and engineers the ability to

create control systems for assistive devices that can learn and reproduce or assist user’s natural

8

movements [13]. These systems tend to be complex and current methods don’t seem to produce a

distinct solution.

 We hypothesize that artificial neural networks can be used to predict a user’s intended

torque output about a joint, their actual torque output could then be measured. The difference

between these two values can then be calculated and applied as the required assistance. This

method will allow the system to be simple as it can be trained on healthy joint movement and the

governing Electromyography (EMG) signals from the surrounding muscles. The system can then

predict future joint mechanics based on this training data. This type of system does not require a

complex model and is capable of scaling to multiple joints. This torque prediction method can

then become the basis for a unique assist-as-needed control system in an assistive exoskeleton.

 .

9

2. BACKGROUND

 It has been shown that future joint angles can be predicted by observing current joint

angles, torques, and sEMG data of pertinent muscles through the use of a Nonlinear Input-Output

Time Series Neural Network (NIOTSNN). Coker et al. sought to assess the performance of a

supervised learning artificial neural network (ANN) algorithm trained with both knee flexion

angle and knee muscle EMG signals during walking to predict knee flexion angle during walking

at various amounts of time into the future. They hypothesized that as the prediction horizon

increased, prediction accuracy would decrease and as the number of algorithm training trials

increased, the prediction accuracy would also increase [2].

 Ten subjects were recruited, comprised of five males and five females with an average

age of 21.5 +/- 2 years, weight of 64.5 +/- 9.8 kg, and height of 166.9 +/- 14.5 cm. These

subjects reported no history of chronic pain in the back or lower extremities in the previous six

months before the study. Twelve surface Electromyography(sEMG) electrodes were placed on

each subject’s left and right tensor fasciae latae, rectus femoris, vastus medialis, vastus lateralis,

bicep femoris, and semitendinosus (Figure 2.1). Raw sEMG data was collected at 1111Hz and

passed through a Butterworth filter with a band from 20Hz to 500Hz to remove motion artifacts

and high-frequency aliasing. The envelope of each sEMG channel was then determined using the

Root Mean Square (RMS) value of the signal with a 300 ms movable window as described by

Farfan et al. [8]. All readings were then presented as percent maximum voluntary contraction

(%MVC). A ten-camera motion capture system was used to track 79 retroreflective markers on

each subject (Figure 2.1). Marker position was captured at 120Hz and passed through a 15Hz

low-pass Butterworth filter to remove noise. Body segments were created using marker positions

and were used to calculate knee flexion.

10

Figure 2.1: Coker et al. [2] sEMG Sensor and Retroreflective Marker Placement

 Each subject performed 15 walking trials over a distance of 20 feet at a self-regulated

pace to maintain natural motion. Data from ten trials were used for training the ANN and five

trials were kept out to test the algorithm’s accuracy. The ANN to be used was MATLABS’s

NIOTSNN using Bayesian Regularization with a single hidden layer of ten nodes and feedback

delay set to two timesteps. Feedback delay refers to the memory provided to each neuron so that

it can look back N timesteps. This is synonymous with lagging inputs by N timesteps (Lopes et

al. [9]). There were to be seven input features comprised of the six sEMG channels and

calculated knee angle of one leg. The output was to be knee angle predicted at 50, 100, 150, and

200 ms in the future. Root mean square error (RMSE) was then calculated between the ANN’s

11

predictions and the actually calculated knee angle at each prediction horizon. Prediction accuracy

can be seen in Table 2.1.

Table 2.1: Coker et al. [2] Knee Angle Prediction Error

Prediction Horizon (ms) Mean RMSE (degrees)

50 0.68

100 2.04

150 3.38

200 4.61

 Results from Coker et al. show that joint angle can be accurately predicted by a

NIOTSNN to increase metabolic economy while using a lower limb exoskeleton. Using this

precedent, we hypothesize this method could be expanded to predict joint torque to inform an

assist-as-needed control system. To test this hypothesis, this study must be augmented to include

joint torque calculation and prediction, expanding the NIOTSNN’s input and output

composition. To adequately predict joint mechanics of everyday use, walking speed would also

need to be varied as different everyday tasks will necessitate a different walking. Varying

walking speed will also be a more rigorous test of the algorithm and should produce a more

robust network.

 We acquired a suitable dataset from Moriera et al. [3]. This dataset was comprised of

lower body sEMG and joint kinematic data of 15 subjects. Eight sEMG sensors were placed on

each participant on the left and right Tibialis Anterior (TA), Gastrocnemius Lateralis (GAL),

12

Biceps Femoris (BF) and Vastus Lateralis (VL) (Figure 2.1). Twenty-four retroreflective sensors

were also placed on the lower body to facilitate motion capture (Figure 2.2).

Figure 2.2: Moreira et al. [2] sEMG Sensor Placement

13

Figure 2.3: Moreira et al.[2] Retroreflective Sensor Placement

 sEMG data was captured at 2000 Hz and bandpass filtered by a 4th order, zero-lag,

Butterworth Filter with cutoff frequencies of 20Hz and 450Hz. Motion capture was captured at

200 Hz by a twelve-camera motion capture system to calculate Joint angles and torques about the

x-, y-, and z-axis. Joint angles were then filtered by a low-pass 4th order, zero-lag, Butterworth

Filter with a cutoff frequency of 6 Hz. Six force platforms, placed in the floor captured ground

reaction forces (GRF), center of pressure (CoP), and Force Platforms Moments (FPMs) at 200

Hz.

 Each subject performed 70 walking trials. Each trial was comprised of three strides,

stepping off with the right foot, then continuing on the left foot, then the right foot, at a fixed

14

pace, guided by a metronome. This course, along with an exaggerated demonstration stride, can

be seen in Figure 2.4. The subjects each began performing ten trials at 1.0 km/h and then rested

for five minutes. This process was then repeated at 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 km/h. Heel

strike detection was used to determine stride times and split data into gait cycles. Each stride was

then normalized to 1001 datapoints.

Figure 2.4: Moreira et al. [2] Experimental gait course

 This dataset supplies the researcher with 6300 strides (15 subjects x 2 legs/ subject x 7

walking speeds x 10 trials/ walking speed x 3 strides/ trial). Due to data irregularities, not all

trials were retained by researchers to be post-processed. This resulted in the researcher retaining

ten subjects with complete datasets to comprise the cohort for this analysis. The ten-subject

cohort supplied 4200 strides (10 subjects x 2 legs/ subject x 7 walking speeds x 10 trials/ walking

speed x 3 strides/ trial) to train and test the NIOTSNN.

15

3. SINGLE-JOINT SYSTEM

3.1 Introduction

We hypothesized that a NIOTSNN could be used to accurately predict future joint torque

at various movement speeds. We began by replicating Coker et al.’s methods with the addition of

joint torque prediction, utilizing the data set supplied by Moreira et al. This required the

researcher to train a NIOTSNN to predict knee joint angle and torque at varying prediction

horizons. We then calculated the error and compared it to the results from Coker et al.

3.2 Methods

Like Coker et al. we utilized MATLABS’s NIOTSNN. This Network was comprised of a

single hidden layer of ten nodes with a sigmoid activation function in the hidden layer and a

linear activation function in the output layer (Figure 3.2.1). Feedback delay was set to two

timesteps. According to Surakhi et al. [10], there are many methods to optimize input lag and

none are optimal for all prediction models but experimentation is valid for feed-forward neural

networks. This is the method we will utilize. We began by initializing input lag to two timesteps

as this was the value used by Coker et al. Finally, Bayesian Regularization was used.

16

Figure 3.2.1: Knee-Only Nonlinear Input-Output Time Series Neural Network

17

The network used 70% train, 15% test, and 15% validation data split. When training,

MATLAB’s fixed stop conditions were used. These stop conditions can be seen in Table 3.2.1.

Table 3.2.1: NIOTSNN Stop Conditions

Unit Stop Value

Epoch 1000

Elapsed Time -

Performance 0

Gradient 7x10-7

Mu 1x1010

Effective # Param 0

Sum Squared Param 0

The input to this network was current joint angle and extrapolated torque about the knee

flexion-extension (FE) axis and the corresponding sEMG data of the correlated muscles. For the

knee, these muscles include the Bicep Femoris (BF) and the Vastus Lateralis (VL) (Figure 3.2).

The VL muscle contributes to knee extension while the BF muscle contributes to knee flexion.

Though torque about the knee is caused by multiple muscles, the activities of these muscles

should correlate well and sufficiently inform our network.

18

Figure 3.2.2: Bicep Femoris and Vastus Lateralis Location (anatomytool.org)

 The target for the networks was time-shifted joint angle and torque data. This allowed the

network to correlate current kinematic and EMG data with future joint kinematic data. This

allowed the network to accurately predict future joint mechanics once trained. For this analysis,

Lateral Anterior

19

there were four input features, BF sEMG data, VL sEMG data, knee angle, and knee torque.

There were two output features, future knee angle and future knee torque. To time shift this data,

our prediction horizon needed to be converted to a number of data points or entry offset. Since

each stride was regularized to 1001 datapoints, this was essentially a ratio of our prediction

horizon to total stride time multiplied by the total number of points in the stride (Equation 3.2.1).

This entry offset could then be removed from the beginning of the data matrix that we wish to

shift into the future. To maintain data synchronicity, the same number of points must also be

removed from the rear of the current input data. This will produce two matrices of equal length

with one phase shifted from the other by the prediction horizon (Figure 3.2.3). Increasing the

number of points being removed as the prediction horizon increases will reduce the portion of

the stride being considered by the neural network. This will likely contribute to a decrease in

prediction accuracy as the prediction horizon increases but is to be expected in a time-delay

neural network.

𝑒𝑛𝑡𝑟𝑦 𝑜𝑓𝑓𝑠𝑒𝑡 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ℎ𝑜𝑟𝑖𝑧𝑜𝑛(𝑚𝑠) ∗ 1001(

𝑝𝑜𝑖𝑛𝑡𝑠
𝑠𝑡𝑟𝑖𝑑𝑒)

𝑠𝑡𝑟𝑖𝑑𝑒 𝑡𝑖𝑚𝑒(𝑚𝑠)

Equation 3.2.1: Prediction Horizon to Entry Offset Conversion

20

Figure 3.2.3: Time-Shifted Stride Data Illustration

 One network was to be trained for each leg of each subject at prediction horizons of 50

ms, 100 ms, and 150 ms, totaling 60 total networks (10 subjects x 2 legs x 3 prediction horizons).

This allowed the researcher to compare our results to Coker et al. as they share the same

prediction horizons and will also allow the researcher to compare training results between legs

and subjects. Since each trial consisted of two right strides and one left stride, we had twice as

much data on the subjects’ right legs as we did their left.

 Each subject performed 10 trials at each speed. Nine trials were used for training while

one trial was left out to test each resulting model. Since each speed was covered in each trial, this

method evaluated the model’s ability to predict joint kinematics at all covered speeds. Since each

Single Stride

21

trial consisted of two right strides and one left stride, left leg networks were trained on 630

strides (10 subjects x 7 walking speeds/ trial x 9 trials x 1stride/ trial) while right leg networks

were trained on 1260 strides (10 subjects x 7 walking speeds/ trial x 9 trials x 2 strides/ trial) at

each prediction horizon. To extract this data and prepare it for the network, the knee data

extraction code (Appendix 2.1) was written in MATLAB to scour the dataset and extract all knee

data for a specified subject and leg at a specified prediction horizon. This script located,

collected, time-shifted, concatenate, and returned training input, training target, testing input, and

testing target matrices.

A pilot training session was performed on the first network to optimize input delay. Input

delay was varied around our initial value of 2. When input delay was decreased, network

prediction accuracy was diminished. When input lag was increased, negligible error accuracy

change was observed. In addition, the network’s input-error cross-correlation graph shows error

correlation at all lags that fell within the confidence limit (Figure 3.2.4). This proves that an

input lag of 2 timesteps is satisfactory. The network was then trained using the training input and

training target matrices until a stop condition was reached as seen in Table 3.2.1. The model was

then exported and saved to be evaluated. The resulting trained model was then evaluated using

the returned testing data. The testing data was input into the model and a prediction was

produced. The RMSE between the prediction and the time-shifted test data was then calculated.

22

Figure 3.2.4: Input-Error Cross-Correlation with an Input Lag of 2 Timesteps

23

3.3 Results

All 60 networks were evaluated with the withheld trial data for their corresponding

subject and leg. This trial was comprised of 1 stride at each walking speed for left leg networks

and 2 strides at each walking speed for right leg networks. The average training time was 3

minutes and 47 seconds. The average prediction time was 72 ms. This means that with current

hardware, it would not be possible to compare to actual kinematic output at the 50 ms prediction

horizon. With dedicated hardware, this prediction time could possibly be decreased below the

50ms threshold.

The RMSE between ground truth and knee angle (Table 3.3.1), and knee torque (Table

3.3.2) was then calculated.

Table 3.3.1: Knee-Only Network Knee Angle Prediction RMSE (Degrees)

subject left right left right left right

1 1.5723 1.5558 2.9068 3.6888 4.6483 5.7382

2 1.8917 1.2998 4.5225 3.0163 5.3133 4.2396

3 1.6449 1.6382 2.8223 4.0235 5.3942 5.1816

8 2.5928 1.1799 3.9188 2.9471 4.8075 3.2575

9 3.0557 1.9482 3.7829 2.3473 5.0898 4.2418

10 1.3906 1.2560 2.6572 2.8876 4.3221 4.7159

11 2.1677 1.7392 4.0028 4.5065 5.9282 5.8187

12 2.4537 1.4667 3.9001 2.9656 3.7900 3.9796

13 1.6091 1.6069 3.3417 3.6715 4.9152 5.3089

14 1.9170 2.0128 3.6188 3.8472 7.9161 5.0264

Average 2.0296 1.5703 3.5474 3.3901 5.2125 4.7508

50 ms 100 ms 150 ms

24

Table 3.3.2: Knee-only Network Knee Torque Prediction RMSE (N-m)

 When the predictions from the neural network were mapped against actual future data at

50 ms (Figure 3.3.1), 100 ms (Figure 3.3.2), and 150 ms (Figure 3.3.3), it can be seen how well

the actual joint mechanics could be reproduced with this method.

subject left right left right left right

1 2.7792 2.0688 5.3553 4.2574 6.9726 5.4493

2 1.5133 1.6564 3.5815 3.4091 4.6302 4.9098

3 1.5841 1.3654 2.3614 2.7925 3.4637 3.4984

8 2.5430 1.9137 7.4359 3.9798 6.0974 4.7125

9 4.0249 2.0522 4.0976 4.0205 6.2085 6.7611

10 2.5104 2.1561 6.2781 4.3789 7.4020 5.8490

11 1.7385 1.8065 3.4298 3.7127 4.8572 4.8258

12 2.5305 1.8174 4.1997 3.6902 4.9613 5.0910

13 1.7003 1.7429 3.5792 3.3310 4.2254 4.1212

14 2.9095 2.1733 4.1475 3.8146 5.5512 4.6357

Average 2.3834 1.8753 4.4466 3.7387 5.4369 4.9854

50 ms 100 ms 150 ms

25

Figure 3.3.1: 50 ms Knee-Only Network Prediction vs. Actual Future Data

Figure 3.3.2: 100 ms Knee-Only Network Prediction vs. Actual Future Data

26

Figure 3.3.3: 150 ms Knee-Only Network Prediction vs. Actual Future Data

 Though RMSE is an accurate metric for average error, actual predictions show that error

occurs at significantly different rates in certain areas of the waveform over others. To accurately

show the areas of higher error, the error regions must be mapped over the true waveform. To

accomplish this, testing gait data and network prediction for each subject were separately grand

averaged. The average error was then determined by subtracting these two waveforms. The

average error was then added to the actual gait data to produce an average error waveform. The

difference was then shaded to show regions where the error is more likely. 50 ms, 100 ms, and

150 ms error region graphs can be seen in Figure 3.3.4, Figure 3.3.5, and Figure 3.3.6,

respectively.

27

Figure 3.3.4: 50 ms Knee-Only Network Grand Average Prediction Error

28

Figure 3.3.5: 100 ms Knee-Only Network Grand Average Prediction Error

29

Figure 3.3.6: 150 ms Knee-Only Network Grand Average Prediction Error

30

3.4 Discussion

When comparing this analysis to that done by Coker et. Al., most parameters were held

constant other than the addition of variable walking speed and torque prediction. When

comparing the resulting error, it can be seen in Table 3.4.1 that the addition of variable walking

speed significantly increases the error. We can also observe numerous error spikes. These could

be removed with low pass filtering. Unfortunately, since each stride is regularized to 1001

points/ stride and each stride varies in duration, a constant sampling frequency cannot be

established to inform a digital filter, making this method impossible. Though these error spikes

have a large magnitude, they have a short duration and should therefore have little effect on

performance.

Table 3.4.1: Knee Angle Prediction RMSE vs Coker et al. Knee Angle Prediction RMSE

Though our prediction error is significantly higher than those from Coker et al., they are in

line with findings from other similar studies. Ma et al. [10] utilized a long short-term memory

(LSTM) neural network with a time advance feature to predict knee angles from sEMG of

governing muscles at the same timestep of individuals walking at a fixed pace. Ma et al. were

able to achieve a prediction error RMSE of 2.6164 degrees to 4.1744 degrees. This is consistent

Prediction horizon(ms) Prediction RMSE (Degrees) Coker et al. RMSE (Degrees) % Difference

50 1.80 0.68 62.22

100 3.47 2.04 41.19

150 4.98 3.38 32.15

31

with our findings though their prediction was wholly based on sEMG and predicting current

mechanics rather than future mechanics.

Ardestani et al. [11] compared the effectiveness of a wavelet neural network (WNN) to a

more traditional three-layer feed-forward artificial neural network (FFANN) in predicting lower

body joint torques of walking subjects unilaterally implanted with knee prostheses. These neural

networks utilized Ground Reactive forces(GRF) and sEMG of eight lower body muscles to

predict current joint torque. Their findings showed that the FFANN was able to predict knee

flexion-extension torque with a normalized root mean squared error (NRMSE) of 10% while

their WNN could predict knee flexion-extension torque with an NRMSE of 5%. When we

normalize our knee flexion-extension torque prediction to the torque range of each subject, we

find that our average NRMSE ranges between 3.21% at 50 ms prediction horizon to 8% at 150

ms prediction horizon. From this, we can see that torque prediction capabilities of this method

perform similarly with adjacent works. Model predictions (Figures 3.3.4-3.3.6) also show that

the waveforms produced by the networks closely mimic the natural gate waveform of the

subjects.

It can be seen in Figures 3.3.4-3.3.6 that error most likely occurs at peaks and troughs in the

gate cycle. This error appears to decrease as the prediction progresses. This may signify that a

larger test dataset, like what would be seen in a real-world application, could significantly

improve performance.

This analysis has shown that though, an average error has increased from the results of Coker

et al., this method can still predict joint angle and torque accurately and is consistent with other

similar studies. This error also appears to improve as the network continues to make predictions.

32

This supports the validity of this method and further analysis of this method should be

performed.

33

4. MULTI-JOINT SYSTEM

 4.1 Introduction

With the NIOTSNN validated on a single-joint system, the next step was to expand the

network to a multi-joint system. In the case of this dataset, this entails the prediction of angle and

torque about the ankle and hip. The first task is to incorporate the ankle as the muscles that

directly govern its plantar flexion and dorsiflexion are monitored in this dataset. This allows the

researcher to analyze the performance changes of this network as we add more joints when

directly observing the governing muscles for that joint. The next task is to predict the mechanics

of the hip. Muscles governing rotation of the hip were not recorded in this dataset. Predicting

mechanics of the hip will display the performance loss of the network when sEMG cannot be

monitored or when it is difficult to consistently monitor sEMG of the governing muscles of a

joint.

 4.2 Methods

For this section, the same network parameters were used as in Section 3. This includes the

stopping conditions outlined in Table 3.2.1, Bayesian Regularization, and the structure of the

network, except for the size of the input and output matrices. To predict knee and ankle

mechanics, the input matrix incorporated eight features, four current sEMG channels, current

ankle angle, current ankle torque, current knee angle, and current knee torque. The output matrix

was comprised of four features, predicted knee angle, predicted knee torque, predicted ankle

angle, and predicted ankle torque (Figure 4.2.1).

34

Figure 4.2.1: Knee-Ankle Nonlinear Input-Output Time Series Neural Network

Current Ankle Angle

Current Ankle Torque

Current Knee Angle

Current Knee Torque

Current Tibialis Anterior sEMG

Current Gastrocnemius Lateralis sEMG

Current Bicep Femoris sEMG

Current Vastus Lateralis sEMG

Predicted Ankle Angle

Predicted Ankle Torque

Predicted Knee Angle

Predicted Knee Torque

35

 As seen in Figure 4.2.2, sEMG recorded at the Tibialis Anterior (TA) and Gastrocnemius

Lateralis (GAL) was also added to the input matrix of the NIOTSNN. The TA muscle

contributes to dorsiflexion about the ankle and the GAL muscle contributes to plantar flexion

about the ankle. These two movements were our main concern as they comprise the movement

of the foot about the ankle in the sagittal plane.

Figure 4.2.2: Gastrocnemius Lateralis and Tibialis Anterior Location (anatomytool.org)

Gastrocnemius

Lateralis
Tibialis Anterior

36

 To construct these matrices, a MATLAB script (Appendix 2.2) was written to perform all

preprocessing steps described in Section 3. The only exception to this was data for two joints

were processed and concatenated. Like Section 3, one network was trained for each leg of each

subject at prediction horizons of 50 ms, 100 ms, and 150 ms, totaling 60 total networks (10

subjects x 2 legs x 3 prediction horizons). Nine trials were used for training while one trial was

left out to test each resulting model. This allowed the researcher to compare our results for each

joint to those produced in Section 3. The network was then trained using the training input and

training target matrices until a stop condition was reached. Each model was then exported and

saved to be evaluated. The resulting trained model was then evaluated using the returned testing

data. The testing data was input into the model and a prediction was produced. The RMSE

between the prediction and the time-shifted test data was then calculated.

 This process was then repeated with the addition of hip mechanics. This resulted in an

input matrix comprised of ten features, four current sEMG channels, current ankle angle, current

ankle torque, current knee angle, current knee torque, current hip angle, and current hip torque.

The output matrix was comprised of four features, predicted knee angle, predicted knee torque,

predicted ankle angle, and predicted ankle torque (Figure 4.2.3).

37

Figure 4.2.3:Knee-Ankle-Hip Nonlinear Input-Output Time Series Neural Network

Current Ankle Angle

Current Ankle Torque

Current Knee Angle

Current Knee Torque

Current Hip Angle

Current Hip Torque

Current Tibialis Anterior sEMG

Current Gastrocnemius Lateralis sEMG

Current Bicep Femoris sEMG

Current Vastus Lateralis sEMG

Predicted Ankle Angle

Predicted Ankle Torque

Predicted Knee Angle

Predicted Knee Torque

Predicted Hip Angle

Predicted Hip Torque

38

4.3 Knee-Ankle Results

All 60 networks were evaluated with the withheld trial data for their corresponding

subject and leg. The average training time was 7 minutes and 15 seconds. The average prediction

time was 82 ms. This means that with current hardware, it would not be possible to compare to

actual kinematic output at the 50 ms prediction horizon. With dedicated hardware, this prediction

time could, potentially, be decreased below the 50ms threshold.

With all 60 knee-ankle networks evaluated, knee angle (Table 4. 3.1), knee torque

(Table 4.3.2), ankle angle (Table 4. 3.3), and ankle torque (Table 4. 3.4) RMSE was produced.

Table 4.3.1: Knee-Ankle Network Knee Angle Prediction RMSE (Degrees)

subject left right left right left right

1 1.5565 1.8229 3.2953 3.4397 5.7466 4.9531

2 1.9908 1.8364 3.7466 2.7004 6.9236 4.0358

3 1.6267 1.4641 3.7544 3.1570 5.6813 11.3054

8 2.0899 1.3490 2.5504 2.9549 3.3841 5.7754

9 1.4476 1.3102 2.6217 2.3588 4.1538 3.1312

10 1.7523 1.5450 3.3853 2.9473 4.2220 6.0362

11 1.8991 1.8190 4.2584 5.0798 5.4472 5.2822

12 1.8367 1.9767 3.3967 3.3953 4.2370 4.7924

13 1.3541 1.5723 3.0941 3.1061 4.9581 3.9866

14 2.7763 1.4855 4.8703 4.1681 5.7393 5.1175

Average 1.8330 1.6181 3.4973 3.3307 5.0493 5.4416

150 ms50 ms 100 ms

39

Table 4.3.2: Knee-Ankle Network Knee Torque Prediction RMSE (N-m)

Table 4.3.3: Knee-Ankle Network Ankle Angle Prediction RMSE (Degrees)

subject left right left right left right

1 2.8286 2.2483 5.7604 4.6551 6.5505 5.2216

2 2.0730 1.8697 3.2389 3.4281 8.4997 4.4597

3 1.4659 1.3568 3.5705 2.6696 3.3034 4.1673

8 2.4703 1.9158 3.8472 3.6785 5.5682 5.0481

9 2.1068 1.6736 3.9500 3.6059 5.3333 5.5642

10 2.4061 2.2193 4.6913 4.3576 13.0596 5.6427

11 1.6183 1.7172 3.2210 3.8895 4.6381 4.2319

12 2.4983 1.7901 4.0161 3.6709 5.3368 4.8612

13 1.6994 1.7183 3.6544 3.0599 4.3762 3.9265

14 2.1968 1.7784 4.1783 3.6518 5.3249 4.5374

Average 2.1363 1.8287 4.0128 3.6667 6.1991 4.7661

50 ms 100 ms 150 ms

subject left right left right left right

1 1.0619 1.1948 2.1301 2.0881 2.9426 3.3683

2 0.9315 1.0976 1.9346 1.8208 3.7885 2.9187

3 1.3986 1.0410 2.6811 2.0486 3.3621 2.4415

8 1.0228 1.0817 2.1019 1.6810 2.8253 2.5822

9 1.1253 0.9577 1.9525 2.0621 3.1351 2.6070

10 1.0544 1.0857 2.1916 2.3925 3.6224 3.6352

11 1.0505 1.0845 2.3851 2.3132 3.2148 4.0360

12 1.1426 1.1689 2.2250 2.3588 2.5468 3.6927

13 0.9255 0.8685 1.9762 1.8289 3.2196 2.5038

14 1.3524 1.1254 1.9039 1.8434 2.5657 2.9509

Average 1.1065 1.0706 2.1482 2.0437 3.1223 3.0736

50 ms 100 ms 150 ms

40

Table 4.3.4: Knee-Ankle Network Ankle Torque Prediction RMSE (N-m)

 When the predictions from the neural network were mapped against actual future data at

50 ms torque (Figure 4.3.5) and angle (Figure 4.3.6), 100 ms torque (Figure 4.3.7) and angle

(Figure 4.3.8), and 150 ms torque (Figure 4.3.9) and angle (Figure 4.3.10), it can be seen just

how well the actual joint mechanics can be reproduced with this method.

subject left right left right left right

1 2.5401 3.0070 5.1807 5.9812 8.0286 9.0205

2 2.1462 2.9271 4.1330 4.1993 9.7637 5.4439

3 1.7139 2.3306 7.9429 3.3904 5.6473 5.1726

8 1.8353 1.7842 3.7474 4.1483 5.9430 5.5256

9 3.4798 2.5183 5.3988 4.5305 8.8019 7.0884

10 2.7194 2.6634 5.1280 6.5691 9.3357 12.7670

11 1.5829 1.6574 3.4410 2.8969 5.1465 7.4659

12 2.1493 2.0414 4.5901 4.6688 7.6451 8.3086

13 1.5988 1.8561 8.6869 4.0227 12.1785 5.7136

14 2.0874 1.9005 4.2694 3.7768 6.0536 6.1854

Average 2.1853 2.2686 5.2518 4.4184 7.8544 7.2691

150 ms50 ms 100 ms

41

Figure 4.3.1: 50 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Torque

Figure 4.3.2: 50 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Angle

42

Figure 4.3.3: 100 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Angle

Figure 4.3.4: 100 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Torque

43

Figure 4.3.5: 150 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Angle

Figure 4.3.6: 150 ms Knee-Ankle Network Predicted vs. Actual Knee and Ankle Torque

44

 Though RMSE is an accurate metric for average error, actual predictions show that error

occurs at significantly different rates in certain areas of the waveform over others. To accurately

show the areas of higher error, the error regions must be mapped over the true waveform. To

accomplish this, testing gait data and network prediction for each subject were separately grand

averaged. The average error was then determined by subtracting these two waveforms. The

average error was then added to the actual gait data to produce an average error waveform. The

difference was then shaded to show regions where the error is more likely. 50 ms, 100 ms, and

150 ms error region graphs can be seen in Figure 4.3.7, Figure 4.3.8, and Figure 4.3.9,

respectively

Figure 4.3.7: 50 ms Knee-Ankle Network Grand Average Prediction Error

45

Figure 4.3.8: 100 ms Knee-Ankle Network Grand Average Prediction Error

46

Figure 4.3.9: 150 ms Knee-Ankle Network Grand Average Prediction Error

4.4 Knee-Ankle-Hip Results

All 60 networks were evaluated with the withheld trial data for their corresponding

subject and leg. The average training time was 15 minutes. The average prediction time was 155

ms. This means that with current hardware, it would not be possible to compare to actual

kinematic output at any of our prediction horizons. With dedicated hardware, this prediction time

could possibly be decreased below one or more of our prediction thresholds.

47

With all 60 knee-ankle-hip networks evaluated, knee torque (Table 4.4.1), knee angle

(Table 4.4.2), ankle torque (Table 4.4.3), ankle angle (Table 4.4.4), hip torque (Table 4.4.3), and

hip angle (Table 4.4.4) RMSE was produced.

Table 4.4.1: Knee-Ankle-Hip Network Knee Torque Prediction RMSE (N-m)

subject left right left right left right

1 2.7578 2.0927 4.7975 3.7092 5.7072 4.9844

2 1.6578 1.6457 3.1700 3.4580 4.5116 4.3697

3 1.2771 1.2749 2.4565 2.3877 4.4716 6.9818

8 2.0096 2.1698 3.5031 3.1717 4.9612 4.1411

9 1.6443 1.7417 3.6458 3.0911 5.1629 4.5554

10 2.5803 2.2097 4.4653 4.1168 6.8915 5.5210

11 1.4173 1.6118 2.8443 3.2102 3.8890 3.9469

12 2.2411 1.8310 3.8901 3.1921 4.5988 4.4605

13 1.5985 1.3731 3.3709 3.0129 4.4825 3.5867

14 1.8119 1.7762 3.6514 3.6310 6.4946 4.8485

Average 1.8996 1.7727 3.5795 3.2981 5.1171 4.7396

50 ms 100 ms 150 ms

48

Table 4.4.2: Knee-Ankle-Hip Network Knee Angle Prediction RMSE (Degrees)

Table 4.4.3: Knee-Ankle-Hip Network Ankle Torque Prediction RMSE (N-m)

subject left right left right left right

1 1.5999 1.6390 3.2112 3.3788 3.4434 5.0442

2 1.1760 4.4719 2.5843 2.3315 3.1710 3.2332

3 1.1106 1.0183 2.4778 3.0700 3.8966 16.4296

8 1.3104 1.0972 2.2488 2.0662 3.2845 3.0426

9 1.1182 1.2432 2.2259 1.9820 3.2454 3.2682

10 1.5213 1.4453 2.2450 3.1204 4.1063 3.5174

11 1.3499 1.4788 3.0278 2.7258 4.4876 4.0540

12 1.2272 1.1593 2.2846 1.9803 3.5053 2.7832

13 1.4969 1.1883 3.2525 2.4635 4.7354 4.1321

14 2.6966 1.7076 4.5054 2.7607 5.5013 4.7586

Average 1.4607 1.6449 2.8063 2.5879 3.9377 5.0263

50 ms 100 ms 150 ms

subject left right left right left right

1 2.2850 2.6887 4.2812 5.6200 6.1865 8.3997

2 1.5866 8.0674 4.5808 3.1883 5.2511 4.7318

3 1.7189 1.6034 3.7840 3.8302 26.9370 9.7799

8 1.9247 2.1975 3.7030 3.4635 5.7382 5.1747

9 2.5389 2.3470 4.2890 4.4364 7.3498 6.8997

10 1.9632 2.4106 4.6067 5.9261 6.5713 7.1248

11 1.5275 1.3957 2.6083 2.5840 5.1002 4.0929

12 1.8019 1.8446 4.1332 3.8167 7.2350 5.5378

13 1.7324 1.6180 3.6062 3.8859 5.4107 5.5897

14 3.6970 1.7732 7.1096 3.3815 18.8788 6.2148

Average 2.0776 2.5946 4.2702 4.0133 9.4659 6.3546

50 ms 100 ms 150 ms

49

Table 4.4.5: Knee-Ankle-Hip Network Ankle Angle Prediction RMSE (Degrees)

Table 4.4.6: Knee-Ankle-Hip Network Hip Torque Prediction RMSE (N-m)

subject left right left right left right

1 0.9178 1.0455 1.9376 2.0880 2.4983 3.1398

2 0.8733 2.6270 1.9756 1.8229 2.5203 2.9089

3 1.2179 0.8545 2.2982 1.6846 7.1504 4.6692

8 0.9438 0.9623 1.7501 1.6603 2.2980 2.5158

9 0.9146 1.0015 2.0284 2.0740 2.9802 2.7273

10 1.0921 1.2089 2.4410 2.3044 3.0817 3.8540

11 0.9524 0.9553 2.0087 2.2824 3.1523 3.1715

12 1.0834 1.0972 2.3467 2.5472 3.0115 3.2699

13 0.8870 0.7685 1.4893 1.7418 2.1950 2.0634

14 1.1537 0.9410 2.5053 1.5884 5.5151 3.1657

Average 1.0036 1.1462 2.0781 1.9794 3.4403 3.1486

50 ms 100 ms 150 ms

subject left right left right left right

1 1.7555 2.4394 3.1910 3.8735 4.0336 5.4029

2 1.3806 3.5726 2.6267 2.5903 3.0806 4.4198

3 1.4600 1.4272 2.8151 2.9303 17.8767 9.7598

8 1.9995 1.9952 3.5752 3.2044 4.7538 4.3656

9 2.4728 2.2511 3.9468 3.9309 5.1502 5.3298

10 2.2781 2.8277 4.2466 5.3166 5.4004 5.4697

11 1.4323 1.6389 2.4672 2.7413 3.3335 3.6920

12 1.9434 2.2243 2.8231 3.1515 4.0492 3.9284

13 2.4318 1.9063 4.2149 3.3440 5.3705 4.0440

14 2.1520 1.8820 4.4416 3.5122 11.8854 5.2701

Average 1.9306 2.2165 3.4348 3.4595 6.4934 5.1682

50 ms 100 ms 150 ms

50

Table 4.4.7: Knee-Ankle-Hip Network Hip Angle Prediction RMSE (Degrees)

When the predictions from the neural network are mapped against actual future data at 50

ms torque (Figure 4.4.1) and angle (Figure 4.4.2), 100 ms torque (Figure 4.4.3) and angle

(Figure 4.4.4), and 150 ms torque (Figure 4.4.5) and angle (Figure 4.4.6), it can be seen just

how well the actual joint mechanics can be reproduced with this method.

subject left right left right left right

1 0.8304 0.9150 1.4610 1.9110 2.2324 2.6191

2 0.8653 0.8455 1.5757 1.6855 2.1372 2.5263

3 1.0429 1.0745 1.5164 1.7840 2.5877 2.5224

8 0.7227 0.7368 1.7284 1.4170 2.1813 1.9524

9 0.9326 0.8208 1.8448 1.5543 2.1933 2.2540

10 1.0240 1.0038 2.0732 1.9791 2.6256 2.6358

11 0.8562 0.9157 1.6164 1.7907 2.4437 3.2444

12 0.8340 0.9150 1.2257 1.2308 2.1668 2.2476

13 0.7841 0.7208 1.6217 1.5085 2.3662 2.0898

14 0.9129 0.9210 1.9926 1.8187 3.1768 2.6858

Average 0.8805 0.8869 1.6656 1.6680 2.4111 2.4778

50 ms 100 ms 150 ms

51

Figure 4.4.1: 50 ms Knee-Ankle-Hip Network Predicted vs Actual Knee, Ankle, and Hip Torque

Figure 4.4.2: 50 ms Knee-Ankle-Hip Network Predicted vs Actual Knee, Ankle, and Hip Angle

52

Figure 4.4.3: 100 ms Knee-Ankle-Hip Network Predicted vs Actual Knee, Hip, and Ankle Angle

Figure 4.4.4:100 ms Knee-Ankle-Hip Network Predicted vs Actual Knee, Hip, and Ankle Torque

53

Figure 4.4.5: 150 ms Knee-Ankle-Hip Network Predicted vs Actual Knee, Hip, and Ankle Angle

Figure 4.4.6:150 ms Knee-Ankle-Hip Network Predicted vs Actual Knee, Hip, and Ankle Torque

54

Though RMSE is an accurate metric for average error, actual predictions show that error

occurs at significantly different rates in certain areas of the waveform over others. To

accurately show the areas of higher error, the error regions must be mapped over the true

waveform. Error region graphs were once again produced for this data. 50 ms, 100 ms, and

150 ms error region graphs can be seen in Figure 4.4.7, Figure 4.4.8, and Figure 4.4.9,

respectively

Figure 4.4.7.1: 50 ms Knee-Ankle-Hip Network Ankle Prediction Grand Average Error

55

Figure 4.4.7.2: 50 ms Knee-Ankle-Hip Network Hip Prediction Grand Average Error

Figure 4.4.7.3: 50 ms Knee-Ankle-Hip Network Knee Prediction Grand Average Error

56

Figure 4.4.8.1: 100 ms Knee-Ankle-Hip Network Ankle Prediction Grand Average Error

Figure 4.4.8.2: 100 ms Knee-Ankle-Hip Network Hip Prediction Grand Average Error

57

Figure 4.4.8.3: 100 ms Knee-Ankle-Hip Network Knee Prediction Grand Average Error

Figure 4.4.9.1: 150 ms Knee-Ankle-Hip Network Ankle Prediction Grand Average Error

58

Figure 4.4.9.2: 150 ms Knee-Ankle-Hip Network Hip Prediction Grand Average Error

Figure 4.4.9.3: 150 ms Knee-Ankle-Hip Network Knee Prediction Grand Average Error

59

 4.5 Discussion

 This section evaluated the performance changes as additional joint predictions were

added to the network. Between the single-joint prediction (Table 3.3.2 and Table 3.3.3) and the

knee-ankle-hip prediction (Table 4.4.1 and Table 4.4.2), knee angle RMSE decreased by an

average of 14.4% with a standard deviation of 15.4 degrees and knee torque RMSE decreased by

an average of 13.5% with a standard deviation of 11.1 N-m. Knee mechanics predictions are the

best metric for this as they appear in all network configurations. This performance improvement

is likely a result of knee mechanics being dependent on the added components. Though the

sEMG of the GAL and TA muscles may not govern knee flexion and extension, hip and ankle

rotation are dependent on knee rotation. This is due to gait being relatively cyclical and

dependent on the coordinated movement of all joints involved. It appears that adding mechanics

of correlated joints may behave similarly sEMG data of governing muscles as they also impact

the movement of the joint being predicted. This is exemplified by the addition of the hip joint.

No muscles governing hip movement were observed but the addition of hip mechanics improved

the prediction performance of other joints of the leg.

 The other point evaluated in this section is the performance of a joint prediction when no

governing sEMG data was considered by the neural network. It can be seen in Table 4.4.6 and

Table 4.4.7 that the error of hip mechanics predictions were lower than those of any other joint.

This was not anticipated as no sEMG data for the hip was considered. This raises the question of

why this occurred. Hip mechanics may be more cyclical and inherently easier to predict for the

network. Whatever the reason, the contribution of sEMG in joint mechanics predictions must be

analyzed.

60

5. NETWORK SIMPLIFICATION AND REDUCTION OF ORDER

 5.1 Introduction

Section 4 displayed the prediction accuracy improvement resulting from more kinematic and

sEMG inputs. Though the network appears to be very capable of making accurate predictions,

the complexity has made prediction time too slow to be valuable at current prediction horizons.

To alleviate this, the network needs to be simplified so that it is not training on values that

contribute minimally to its ultimate performance. In Section 4, it was observed that though the

hip joint had no sEMG input, it outperformed all other joints. This could signify that sEMG

contributes very little to prediction accuracy, so we began by eliminating sEMG from the

network entirely and evaluated performance. We then performed principal component analysis

(PCA) to further identify what elements contribute the most to prediction accuracy to further

reduce the complexity of the network.

 5.2 Methods

For this section, the same network parameters were used as Sections 3 and 4. This includes

the stopping conditions outlined in Table 3.2.1, Bayesian Regularization, and the structure of the

network, with the exception of the size of the input and output matrices. To predict knee, ankle,

and hip mechanics, the input matrix incorporated six features, current ankle angle, current ankle

torque, current knee angle, current knee torque, current hip angle, and current hip torque. The

output matrix was comprised of six features, predicted knee angle, predicted knee torque,

predicted ankle angle, predicted ankle torque, predicted hip angle, and predicted hip torque

(Figure 5.2.1).

61

Figure 5.2.1: sEMG-Free Nonlinear Input-Output Time Series Neural Network

Current Ankle Angle

Current Ankle Torque

Current Knee Angle

Current Knee Torque

Current Hip Angle

Current Hip Torque

Predicted Ankle Angle

Predicted Ankle Torque

Predicted Knee Angle

Predicted Knee Torque

Predicted Hip Angle

Predicted Hip Torque

62

To construct these matrices, a MATLAB script (Appendix 2.4) was written to perform all

preprocessing steps described in Section 3. The only exception to this was data for only joint

mechanics was processed and concatenated with no sEMG data. Like Sections 3 and 4, one

network was trained for each leg of each subject at prediction horizons of 50ms, 100ms, and

150ms, totaling 60 total networks (10 subjects x 2 legs x 3 prediction horizons). Nine trials were

used for training while one trial was left out to test each resulting model. This allowed the

researcher to compare our results for each joint to those produced in Section 4. Each network

was then trained using the training input and training target matrices until a stop condition was

reached. Each model was then exported and saved to be evaluated. The resulting trained model

was then evaluated using the returned testing data. The testing data was entered into the model

and a prediction was produced. The RMSE between the prediction and the time-shifted test data

was then calculated.

63

 5.3 Results

All 60 networks were evaluated with the withheld trial data for their corresponding

subject and leg. The average training time was 10 minutes and 41 seconds. The average

prediction time was 80 ms. This means that with current hardware, it would not be possible to

compare to actual kinematic output at the 50 ms prediction horizon. With dedicated hardware,

this prediction time could possibly be decreased below the 50ms threshold.

With all 60 sEMG-free knee-ankle-hip networks evaluated, knee torque (Table 5.3.1),

knee angle (Table 5.3.2), ankle torque (Table 5.3.3), ankle angle (Table 5.3.4), hip torque (Table

5.3.5), and hip angle (Table 5.3.6) RMSE was produced.

Table 5.3.1: sEMG-Free Network Knee Torque Prediction RMSE (N-m)

subject left right left right left right

1 2.7602 1.9675 4.9162 3.8821 5.4795 5.2097

2 19.3325 1.6052 3.2286 3.1162 4.8616 4.0622

3 1.5105 1.3429 2.7460 2.4114 2.9106 3.1518

8 1.8275 1.6664 3.5262 3.5204 4.7791 4.6906

9 1.5966 1.7961 3.8558 3.0796 5.1413 4.1098

10 2.4805 2.3434 4.5796 4.5029 6.4710 6.0515

11 1.3959 1.4452 3.0581 3.1161 4.0627 3.6911

12 2.1377 1.7914 3.9714 3.1972 5.0499 4.3504

13 1.5588 1.5090 3.2982 2.8707 3.7560 3.4750

14 2.0877 1.6774 3.3133 3.4543 5.1868 4.5651

Average 3.6688 1.7145 3.6493 3.3151 4.7699 4.3357

50 ms 100 ms 150 ms

64

Table 5.3.2: sEMG-Free Network Knee Angle Prediction RMSE (Degrees)

Table 5.3.3: sEMG-Free Network Ankle Torque Prediction RMSE (N-m)

subject left right left right left right

1 1.4467 1.6149 3.0351 3.3995 3.7910 8.9675

2 1.1922 1.2886 2.2002 2.1707 3.8718 3.3680

3 1.5642 1.3950 2.6580 2.7351 4.2596 3.6359

8 1.3118 1.0792 2.1322 2.1224 3.4639 3.4366

9 1.0777 1.0716 2.4523 2.1766 3.9867 2.6628

10 1.5857 2.1407 2.7206 2.7728 3.3568 4.0126

11 1.3702 1.5714 2.7133 2.8139 3.6415 4.0623

12 1.3345 1.0936 2.1815 2.1407 2.6993 3.4000

13 1.7439 1.5225 3.5760 2.9840 4.4212 4.0448

14 1.8332 1.5946 3.1315 2.8807 4.8912 4.4406

Average 1.4460 1.4372 2.6801 2.6196 3.8383 4.2031

50 ms 100 ms 150 ms

subject left right left right left right

1 2.2838 2.5090 4.3589 5.5841 6.4202 13.3242

2 4.2734 1.5808 3.6806 3.4992 5.7301 5.1582

3 1.7982 1.6415 3.9528 3.4537 5.5525 5.1016

8 1.7207 2.0287 3.8950 3.6765 5.4733 5.7749

9 2.3020 2.5086 4.8238 4.6826 6.2927 6.4807

10 2.0364 4.8582 4.2606 5.9320 6.9038 13.9427

11 1.3840 1.5042 2.9177 2.8550 3.8260 4.0915

12 1.9162 1.7239 4.0744 4.2556 6.5875 5.9311

13 1.8444 2.0140 4.0856 4.1077 6.1210 5.6089

14 2.1788 1.7908 3.9688 3.6669 7.8406 5.7838

Average 2.1738 2.2160 4.0018 4.1713 6.0748 7.1198

50 ms 100 ms 150 ms

65

Table 5.3.4: sEMG-Free Network Ankle Angle Prediction RMSE (Degrees)

Table 5.3.5: sEMG-Free Network Hip Torque Prediction RMSE (N-m)

subject left right left right left right

1 0.9528 1.0343 1.8794 2.3748 2.3294 4.6948

2 1.9889 0.8973 1.7910 2.0442 2.5427 3.2734

3 1.1493 0.8778 2.3156 1.6822 3.3269 2.6742

8 0.8865 0.9755 1.9690 1.6916 2.6626 2.4025

9 1.0407 1.1259 1.9097 2.0382 2.9050 2.9243

10 1.0090 1.6250 2.4784 2.7948 3.3465 3.8174

11 0.9086 1.0776 2.0812 2.3193 2.7464 3.2906

12 1.0116 1.1077 2.1323 2.6064 2.9258 3.4726

13 0.7748 0.8331 1.9072 1.8353 2.4912 2.8193

14 1.1017 0.8580 1.9021 2.0224 3.2066 2.8014

Average 1.0824 1.0412 2.0366 2.1409 2.8483 3.2171

50 ms 100 ms 150 ms

subject left right left right left right

1 1.7872 2.3199 3.2055 4.1370 4.0034 6.7180

2 12.1127 1.2703 2.5234 2.8126 3.3168 3.4820

3 1.4587 1.4866 2.7063 2.6903 3.9125 3.5146

8 1.9548 1.9072 3.3899 3.4036 4.8392 4.5940

9 2.1696 2.4360 3.8426 3.8146 2.1571 5.2844

10 2.2894 3.1596 2.8072 4.7833 6.1985 8.8827

11 1.5453 1.6225 2.4746 2.7191 3.6124 3.3796

12 1.9799 2.0558 2.8075 3.4416 4.0497 3.9372

13 2.3722 2.0302 4.1749 3.3107 5.0671 4.1409

14 2.1455 1.9803 4.1921 3.3659 5.8247 4.8692

Average 2.9815 2.0268 3.2124 3.4479 4.2981 4.8803

50 ms 100 ms 150 ms

66

Table 5.3.6: sEMG-Free Network Hip Angle Prediction RMSE (Degrees)

 It can be seen that the classification accuracy of the sEMG-free network minimally varies

from that of the networks that consider sEMG. This is likely since sEMG governs movement so

joint mechanics and sEMG may be somewhat redundant. To evaluate this, principal component

analysis (PCA) had to be performed. To accomplish this, the MATLAB PCA function was used

to quantify the contribution of each feature to the total variance of the dataset. PCA was

performed on the concatenated input data for the knee-ankle-hip network. This produced ten

principal components whose coefficient matrix can be seen in Table 5.3.7. This resulted in data

variance dependence of each component seen in Table 5.3.8. It can be seen that over 90% of the

variance of the data set can be described by four principal components, PC1, PC2, PC3, and

PC4.

subject left right left right left right

1 0.8317 0.9342 1.5301 1.7091 2.1853 3.2125

2 0.8057 0.8256 1.5199 1.6674 2.4452 2.5251

3 0.9846 1.0544 1.4318 1.8280 2.3058 2.5861

8 0.7213 0.7516 1.6335 1.4233 2.1115 2.1040

9 0.8331 0.7854 1.6467 1.6713 2.6871 1.9454

10 0.9292 1.1967 1.9303 1.9565 2.7580 2.6450

11 0.8073 0.9661 1.6706 1.9899 2.1438 2.3089

12 0.7516 0.7471 1.3193 1.6718 1.9994 2.1765

13 0.8165 0.7071 1.6618 1.5137 2.4402 2.2484

14 1.0627 0.8897 2.0268 1.9433 2.5550 2.3162

Average 0.8544 0.8858 1.6371 1.7374 2.3631 2.4068

50 ms 100 ms 150 ms

67

Table 5.3.7: Principal Component Coefficients for Knee-Ankle-Hip Data

Table 5.3.8: Principal Component Variance Contribution for Knee-Ankle-Hip Data

 5.4 Discussion

This section has demonstrated the networks’ prediction ability has little dependence on many

of the inputs to the network. This raises the question of which input variables are significantly

contributing to the network’s classification accuracy. Upon performing PCA on the entire dataset

used by the neural networks, it can be seen in Table 5.3.8 that over 90% of the variance of the

VL sEMG BF sEMG Knee Angle Knee Torque TA sEMG GAL sEMG Ankle Angle Ankle Torque Hip Angle Hip Torque

PC1 0.0798 -0.3781 -0.1473 0.0664 0.1674 0.0142 -0.0426 0.8414 -0.2169 0.1988

PC2 0.0326 -0.1185 0.0627 0.3331 -0.3382 -0.4000 0.7637 0.0691 0.0811 -0.0302

PC3 0.1181 0.8333 -0.2386 0.3559 -0.0131 0.1575 0.0433 0.2815 -0.0172 0.0411

PC4 0.0805 0.2507 0.8756 -0.1009 0.2691 -0.1502 0.0519 0.1558 -0.1190 0.1330

PC5 0.1806 -0.1458 -0.0960 0.5578 0.6958 -0.1989 -0.0359 -0.2629 -0.0785 -0.1597

PC6 -0.0126 -0.0377 -0.0286 0.1341 0.0647 -0.0934 -0.1038 -0.0858 0.5740 0.7869

PC7 -0.1799 -0.0767 0.0126 0.1060 0.0578 0.5324 0.3504 -0.2658 -0.5284 0.4370

PC8 0.8451 0.0364 -0.1851 -0.3840 0.0231 -0.0890 0.1511 -0.1404 -0.1473 0.1736

PC9 0.2626 -0.1593 0.1858 0.0623 0.1134 0.6649 0.2447 0.1071 0.5172 -0.2710

PC10 -0.3519 0.1744 -0.2679 -0.5061 0.5290 -0.1038 0.4390 0.0742 0.1669 -0.0324

68

data set can be described by four principal components, PC1, PC2, PC3, and PC4. These four

principal components correlate closely with ankle torque, ankle angle, BF sEMG, and knee angle

(Table 5.3.8). This suggests that this system can be mostly predicted through ankle torque, ankle

angle, BF sEMG, and knee angle.

To evaluate this claim, each network seen in the past sections was retrained using these four

components as input features and the six output features from the knee-ankle-hip network were

set as targets. These networks took an average of 7 minutes and 31 seconds to train and took an

average of 76 ms to make a prediction. Average classification RMSE across all subjects of each

prediction target can be seen in Table 5.4.1.

Table 5.4.1: Simplified Network Average RMSE Across All Subjects

When comparing these results to those of the full knee-ankle-hip network with 10 features,

the average training and prediction time was reduced by 50%. This reduction of prediction time

makes this simplified network capable of making predictions within the 100ms and 150ms

prediction horizon on current hardware. On average, each parameter has a 67% higher prediction

error when compared to the full network. Though this is a significant performance loss, it still

outperforms similar systems.

left right left right left right

Knee Angle(deg.) 2.3569 2.2971 3.9639 4.1032 5.5108 5.5237

Knee Torque (N-M) 4.3521 3.7443 5.6158 5.4028 6.2207 5.3446

Ankle Angle(deg.) 1.7509 1.6804 2.5199 2.7725 3.2620 3.5212

Ankle Torque (N-M) 3.0569 2.9268 5.3494 5.2486 7.4317 7.8372

Hip Angle(deg.) 3.4883 3.4103 3.6834 3.6960 3.9275 4.2034

Hip torque (N-M) 5.3240 5.4032 5.8746 5.9312 6.5839 6.3378

150ms50 ms 100ms

69

Ardestani et al. [11] compared the effectiveness of a wavelet neural network (WNN) to a

more traditional three-layer feed-forward artificial neural network (FFANN) in predicting lower

body joint torques of walking subjects unilaterally implanted with knee prostheses. They were

able to achieve torque prediction NRMSE for hip flexion-extension, knee flexion-extension, and

ankle dorsiflexion-plantarflexion seen in Table 5.4.2. To compare our result to these findings, we

normalized our torque RMSE to the total torque range of the subject, leg, and joint being

evaluated. We then averaged this torque NRMSE between legs at each prediction horizon.

Ardestani et al. predicted current joint torques from sEMG and GRF but the similarity in these

methods provides a good baseline to compare with (Table 5.4.2).

Table 5.4.2: Ardestani et al. [11] Torque Prediction with WNN and FFANN vs.

NIOTSNN Torque Prediction

 It can be seen in Table 5.4.2 that our NIOTSNN outperforms both the WNN and FFANN

at prediction horizons up to 150ms, where it performs similarly to the WNN. This displays that

even though our network is heavily simplified, it can still perform similarly to adjacent systems

in terms of accuracy while maintaining low prediction and training times relative to our more

complex networks.

WNN(%) FFANN(%)

NIOTSNN

50 ms (%)

NIOTSNN

100 ms(%)

NIOTSNN

150 ms(%)

Hip 9.00 14.00 6.80 8.10 9.20

Knee 5.00 10.00 2.80 5.00 7.30

Ankle 8.00 12.00 6.70 7.30 8.00

70

6. CONCLUSION

We hypothesized that artificial neural networks can be used to predict an individual’s joint

torque and angle when past joint torque, angle, and sEMG activity of pertinent muscles were

known. In this thesis, we have displayed this is true. We have also established that increasing the

number of observed joints can greatly improve the prediction accuracy at each joint. This was a

result of biomechanical motion being heavily dependent on certain factors over others. In the

example presented here, over 90% of the variance of the data set was a result of four principal

components that varied directly with four inputs. When this was evaluated, it was shown that

when the network was simplified to these four inputs, acceptable prediction accuracy and speed

were maintained.

These findings show that this method would be viable for the originally proposed assistive

exoskeleton control system. The extent of the reduction of order that was performed here

displays that this method could function with a less complex data collection system than

originally proposed.

71

7. FUTURE WORK

With the effectiveness of this method shown, it can be expanded in the future. The main

goal of this joint mechanics prediction method is to inform an assist-as-needed control system for

assistive devices. To integrate this method into a real-world system, it will need to first be

evaluated with real-time data. In this paper, all data post-processed and all strides were

regularized to 1001 points. This would be impossible to do in real-time as the actual duration of a

stride is unknown.

Other types of movement should also be evaluated on various body parts. In this paper,

only walking was evaluated. Walking is very cyclical making it much easier to predict than other

motions or changing between motions such as sitting or climbing. Upper body movements would

also be a good candidate for this evaluation. With these motions being much less cyclical, they

will likely not reduce dimensionality as extreme of an extent. These applications may benefit

from sEMG consideration to a higher degree.

With the findings from this paper, this method appears to be a valid method to inform

assistive device control systems.

72

APPENDICIES

Appendix 1: Data Extraction Function

 Appendix 1.1: Ankle Data Extraction Function:

function[Input,Target,validation,validationTarget,time]=ankleExtract(delay, leg, sub)
 FileName = 'Processed_Data.mat';
 for i = sub;
 delay=delay
 Ltrainshin=[];
 Ltraincalf=[];
 LtrainAtheta=[];
 LtrainAtorque=[];
 Rtrainshin=[];
 Rtraincalf=[];
 RtrainAtheta=[];
 RtrainAtorque=[];

 Ltestshin=[];
 Ltestcalf=[];
 LtestAtheta=[];
 LtestAtorque=[];
 Rtestshin=[];
 Rtestcalf=[];
 RtestAtheta=[];
 RtestAtorque=[];

 Rvalcalf=[];
 Rvalshin=[];
 RvalAtheta=[];
 RvalAtorque=[];

 Lvalcalf=[];
 Lvalshin=[];
 LvalAtheta=[];
 LvalAtorque=[];

 RtargAtheta=[];
 LtargAtheta=[];

 RtargAtorque=[];
 LtargAtorque=[];

 Ltargcalf=[];
 Ltargshin=[];

 FolderName = sprintf('E:\\documents\\matlab scripts\\knee engle emg--
RESEARCH\\knee angle emg\\Participant%i\\',i);
 File = fullfile(FolderName, FileName);
 participantData = load(File);

73

 participantData = struct2cell(participantData);
 velocities = participantData{1};
 velocities=struct2cell(velocities);
 for v = 1:length(velocities) %all walking velocities
 v1=velocities{v}; %current walking velocity
 v1=struct2cell(v1);
 R=v1{1};
 R=struct2cell(R);
 R_emg=R{3};
 R_stridetime=R{5};

 R_emg_trials=R_emg(:,1);
 Rtrials=[];
 for rT = 1:length(R_emg_trials); % right emg data indicies
 rT;
 trialnum=R_emg_trials(rT);
 trialnum=(trialnum{1,1}{1,1});
 k = strsplit(trialnum,':');
 %k=cell2mat(k);
 k=(k(2));
 k=cell2mat(k);
 k=strtrim(k);
 k=str2num(k);
 Rtrials=[Rtrials, k]; % right emg data indicies array
 end

 R_theta=R{1};
 R_torque=R{8};
 for rtrial = Rtrials;

 stridetime1=R_stridetime(rtrial,2);
 stridetime1=table2array(stridetime1);

 stridetime2=R_stridetime(rtrial,3);
 stridetime2=table2array(stridetime2);

 removeentries1=round((delay/stridetime1));
 removeentries2=round(delay/stridetime2);

 theta=R_theta(rtrial,2);
 theta=table2array(theta{1});

 theta1=theta(:,19);
 theta1=theta1';

 traintheta1=theta1(1:end-removeentries1);
 testtheta1=theta1(removeentries1+1:end);

 theta2=theta(:,22);
 theta2=theta2';

 traintheta2=theta2(1:end-removeentries2);
 testtheta2=theta2(removeentries2+1:end);

 if rtrial == Rtrials(end)

74

 for element =1:length(traintheta1);
 RvalAtheta(end+1)=traintheta1(element);
 end
 for element =1:length(traintheta2);
 RvalAtheta(end+1)=traintheta2(element);
 end
 for element =1:length(testtheta1);
 RtargAtheta(end+1)=testtheta1(element);
 end
 for element =1:length(testtheta2);
 RtargAtheta(end+1)=testtheta2(element);
 end
 else
 for element =1:length(traintheta1);
 RtrainAtheta(end+1)=traintheta1(element);
 end
 for element =1:length(traintheta2);
 RtrainAtheta(end+1)=traintheta2(element);
 end
 for element =1:length(testtheta1);
 RtestAtheta(end+1)=testtheta1(element);
 end
 for element =1:length(testtheta2);
 RtestAtheta(end+1)=testtheta2(element);
 end
 end

 torque=R_torque(rtrial,2);
 torque=table2array(torque{1});

 torque1=torque(:,19);
 torque1=torque1';

 traintorque1=torque1(1:end-removeentries1);
 testtorque1=torque1(removeentries1+1:end);

 torque2=torque(:,22);
 torque2=torque2';

 traintorque2=torque2(1:end-removeentries2);
 testtorque2=torque2(removeentries2+1:end);
 if rtrial == Rtrials(end)
 for element =1:length(traintorque1);
 RvalAtorque(end+1)=traintorque1(element);
 end
 for element =1:length(traintorque2);
 RvalAtorque(end+1)=traintorque2(element);
 end
 for element =1:length(testtorque1);
 RtargAtorque(end+1)=testtorque1(element);
 end
 for element =1:length(testtorque2);
 RtargAtorque(end+1)=testtorque2(element);
 end

75

 else
 for element =1:length(traintorque1);
 RtrainAtorque(end+1)=traintorque1(element);
 end
 for element =1:length(traintorque2);
 RtrainAtorque(end+1)=traintorque2(element);
 end
 for element =1:length(testtorque1);
 RtestAtorque(end+1)=testtorque1(element);
 end
 for element =1:length(testtorque2);
 RtestAtorque(end+1)=testtorque2(element);
 end
 end

 end
 for Rtrial = 1:length(R_emg); %collect emg data for current trial
 stridetime1=R_stridetime(Rtrials(Rtrial),2);
 stridetime1=table2array(stridetime1);

 stridetime2=R_stridetime(Rtrials(Rtrial),3);
 stridetime2=table2array(stridetime2);

 removeentries1=round((delay/stridetime1));
 removeentries2=round(delay/stridetime2);

 EMG=R_emg(Rtrial,2);
 EMG=EMG{1};

 shinEMG1=EMG(:,5);
 shinEMG1=table2array(shinEMG1)';

 calfEMG1=EMG(:,7);
 calfEMG1=table2array(calfEMG1)';

 shinEMG2=EMG(:,6);
 shinEMG2=table2array(shinEMG2)';

 calfEMG2=EMG(:,8);
 calfEMG2=table2array(calfEMG2)';

 trainshinEMG1=shinEMG1(1:end-removeentries1);

 traincalfEMG1=calfEMG1(1:end-removeentries1);

 trainshinEMG2=shinEMG2(1:end-removeentries2);

 traincalfEMG2=calfEMG2(1:end-removeentries2);

 if Rtrial== length(R_emg)
 for element =1:length(trainshinEMG1);
 Rvalshin(end+1)=trainshinEMG1(element);
 end
 for element =1:length(trainshinEMG2);

76

 Rvalshin(end+1)=trainshinEMG2(element);
 end
 for element =1:length(traincalfEMG1);
 Rvalcalf(end+1)=traincalfEMG1(element);
 end
 for element =1:length(traincalfEMG2);
 Rvalcalf(end+1)=traincalfEMG2(element);
 end
 else
 for element =1:length(trainshinEMG1);
 Rtrainshin(end+1)=trainshinEMG1(element);
 end
 for element =1:length(trainshinEMG2);
 Rtrainshin(end+1)=trainshinEMG2(element);
 end
 for element =1:length(traincalfEMG1);
 Rtraincalf(end+1)=traincalfEMG1(element);
 end
 for element =1:length(traincalfEMG2);
 Rtraincalf(end+1)=traincalfEMG2(element);
 end
 end

 end

 %%
 L=v1{2};
 L=struct2cell(L);
 L_emg=L{3};
 L_stridetime=L{5};

 L_emg_trials=L_emg(:,1);
 Ltrials=[];
 for lT = 1:length(L_emg_trials); % right emg data indicies
 lT;
 trialnum=L_emg_trials(lT);
 trialnum=(trialnum{1,1}{1,1});
 k = strsplit(trialnum,':');
 %k=cell2mat(k);
 k=(k(2));
 k=cell2mat(k);
 k=strtrim(k);
 k=str2num(k);
 Ltrials=[Ltrials, k] ;% right emg data indicies array
 end

 L_theta=L{1};
 L_torque=L{8};
 for ltrial = Ltrials;

 stridetime1=L_stridetime(ltrial,2);
 stridetime1=table2array(stridetime1);

 removeentries1=round((delay/stridetime1));

77

 theta=L_theta(ltrial,2);
 theta=table2array(theta{1});

 theta1=theta(:,7);
 theta1=theta1';

 traintheta1=theta1(1:end-removeentries1);
 testtheta1=theta1(removeentries1+1:end);
 if ltrial== Ltrials(end)

 for element =1:length(traintheta1);
 LvalAtheta(end+1)=traintheta1(element);
 end
 for element =1:length(testtheta1);
 LtargAtheta(end+1)=testtheta1(element);
 end
 else
 for element =1:length(traintheta1);
 LtrainAtheta(end+1)=traintheta1(element);
 end
 for element =1:length(testtheta1);
 LtestAtheta(end+1)=testtheta1(element);
 end
 end

 torque=L_torque(ltrial,2);
 torque=table2array(torque{1});

 torque1=torque(:,7);
 torque1=torque1';

 traintorque1=torque1(1:end-removeentries1);
 testtorque1=torque1(removeentries1+1:end);

 if ltrial== Ltrials(end)
 for element =1:length(traintorque1);
 LvalAtorque(end+1)=traintorque1(element);
 end
 for element =1:length(testtorque1)
 LtargAtorque(end+1)=testtorque1(element);
 end
 else
 for element =1:length(traintorque1);
 LtrainAtorque(end+1)=traintorque1(element);
 end
 for element =1:length(testtorque1);
 LtestAtorque(end+1)=testtorque1(element);
 end
 end

 end
 for Ltrial = 1:length(L_emg); %collect emg data for current trial
 stridetime1=L_stridetime(Ltrials(Ltrial),2);
 stridetime1=table2array(stridetime1);

78

 removeentries1=round((delay/stridetime1));

 EMG=L_emg(Ltrial,2);
 EMG=EMG{1};

 shinEMG1=EMG(:,3);
 shinEMG1=table2array(shinEMG1)';

 calfEMG1=EMG(:,4);
 calfEMG1=table2array(calfEMG1)';

 trainshinEMG1=shinEMG1(1:end-removeentries1);

 traincalfEMG1=calfEMG1(1:end-removeentries1);

 testshinEMG1=shinEMG1(removeentries1+1:end);

 testcalfEMG1=calfEMG1(removeentries1+1:end);

 if Ltrial== length(L_emg)
 for element =1:length(trainshinEMG1);
 Lvalshin(end+1)=trainshinEMG1(element);
 end
 for element =1:length(traincalfEMG1);
 Lvalcalf(end+1)=traincalfEMG1(element);
 end
 for element =1:length(testshinEMG1);
 Ltargshin(end+1)=testshinEMG1(element);
 end
 for element =1:length(testcalfEMG1);
 Ltargcalf(end+1)=testcalfEMG1(element);
 end
 else
 for element =1:length(trainshinEMG1);
 Ltrainshin(end+1)=trainshinEMG1(element);
 end
 for element =1:length(traincalfEMG1);
 Ltraincalf(end+1)=traincalfEMG1(element);
 end
 for element =1:length(testshinEMG1);
 Ltestshin(end+1)=testshinEMG1(element);
 end
 for element =1:length(testcalfEMG1);
 Ltestcalf(end+1)=testcalfEMG1(element);
 end
 end

 end
 end

79

 end

 %%%
 LEG=leg
 if LEG== "L"
 Input=[Ltrainshin;Ltraincalf;LtrainAtheta;LtrainAtorque];
 Target=[LtestAtheta;LtestAtorque];
 validation=[Lvalshin;Lvalcalf;LvalAtheta;LvalAtorque];
 validationTarget=[LtargAtheta;LtargAtorque];
 time=[1:length(validation)];
 else
 Input=[Rtrainshin;Rtraincalf;RtrainAtheta;RtrainAtorque];
 Target=[RtestAtheta;RtestAtorque];
 validation=[Rvalshin;Rvalcalf;RvalAtheta;RvalAtorque];
 validationTarget=[RtargAtheta;RtargAtorque];
 time=[1:length(validation)];
 end

 Appendix 1.2: Knee Data Extraction Function:

function[Input,Target,validation,validationTarget,time]=kneeExtract(delay, leg,sub)
FileName = 'Processed_Data.mat';
for i = sub;
 delay=delay;
 Ltrainquad=[];
 Ltrainham=[];
 Ltraintheta=[];
 Ltraintorque=[];
 Rtrainquad=[];
 Rtrainham=[];
 Rtraintheta=[];
 Rtraintorque=[];
 Ltestquad=[];
 Ltestham=[];
 Ltesttheta=[];
 Ltesttorque=[];
 Rtestquad=[];
 Rtestham=[];
 Rtesttheta=[];
 Rtesttorque=[];

 Rvalham=[];
 Rvalquad=[];
 Rvaltheta=[];
 Rvaltorque=[];

 Lvalham=[];
 Lvalquad=[];
 Lvaltheta=[];
 Lvaltorque=[];

 Rtargtheta=[];
 Ltargtheta=[];

80

 Rtargtorque=[];
 Ltargtorque=[];

 Ltargham=[];
 Ltargquad=[];

 FolderName = sprintf('E:\\documents\\matlab scripts\\knee engle emg--
RESEARCH\\knee angle emg\\Participant%i\\',i);
 File = fullfile(FolderName, FileName);
 participantData = load(File);
 participantData = struct2cell(participantData);
 velocities = participantData{1};
 velocities=struct2cell(velocities);
 for v = 1:length(velocities) %all walking velocities
 v1=velocities{v}; %current walking velocity
 v1=struct2cell(v1);
 R=v1{1};
 R=struct2cell(R);
 R_emg=R{3};
 R_stridetime=R{5};

 R_emg_trials=R_emg(:,1);
 Rtrials=[];
 for rT = 1:length(R_emg_trials); % right emg data indicies
 rT;
 trialnum=R_emg_trials(rT);
 trialnum=(trialnum{1,1}{1,1});
 k = strsplit(trialnum,':');
 %k=cell2mat(k);;
 k=(k(2));
 k=cell2mat(k);
 k=strtrim(k);
 k=str2num(k);
 Rtrials=[Rtrials, k]; % right emg data indicies array
 end
 Rtrials;

 R_theta=R{1};
 R_torque=R{8};
 for rtrial = Rtrials;

 stridetime1=R_stridetime(rtrial,2);
 stridetime1=table2array(stridetime1);

 stridetime2=R_stridetime(rtrial,3);
 stridetime2=table2array(stridetime2);

 removeentries1=round((delay/stridetime1));
 removeentries2=round(delay/stridetime2);

 theta=R_theta(rtrial,2);
 theta=table2array(theta{1});

81

 theta1=theta(:,13);
 theta1=theta1';

 traintheta1=theta1(1:end-removeentries1);
 testtheta1=theta1(removeentries1+1:end);

 theta2=theta(:,16);
 theta2=theta2';

 traintheta2=theta2(1:end-removeentries2);
 testtheta2=theta2(removeentries2+1:end);
 if rtrial == Rtrials(end)
 for element =1:length(traintheta1);
 Rvaltheta(end+1)=traintheta1(element);
 end
 for element =1:length(traintheta2);
 Rvaltheta(end+1)=traintheta2(element);
 end
 for element =1:length(testtheta1);
 Rtargtheta(end+1)=testtheta1(element);
 end
 for element =1:length(testtheta2);
 Rtargtheta(end+1)=testtheta2(element);
 end
 else
 for element =1:length(traintheta1);
 Rtraintheta(end+1)=traintheta1(element);
 end
 for element =1:length(traintheta2);
 Rtraintheta(end+1)=traintheta2(element);
 end
 for element =1:length(testtheta1);
 Rtesttheta(end+1)=testtheta1(element);
 end
 for element =1:length(testtheta2);
 Rtesttheta(end+1)=testtheta2(element);
 end
 end

 torque=R_torque(rtrial,2);
 torque=table2array(torque{1});

 torque1=torque(:,13);
 torque1=torque1';

 traintorque1=torque1(1:end-removeentries1);
 testtorque1=torque1(removeentries1+1:end);

 torque2=torque(:,16);
 torque2=torque2';

 traintorque2=torque2(1:end-removeentries2);
 testtorque2=torque2(removeentries2+1:end);

82

 if rtrial == Rtrials(end)
 for element =1:length(traintorque1);
 Rvaltorque(end+1)=traintorque1(element);
 end
 for element =1:length(traintorque2);
 Rvaltorque(end+1)=traintorque2(element);
 end
 for element =1:length(testtorque1);
 Rtargtorque(end+1)=testtorque1(element);
 end
 for element =1:length(testtorque2);
 Rtargtorque(end+1)=testtorque2(element);
 end
 else
 for element =1:length(traintorque1);
 Rtraintorque(end+1)=traintorque1(element);
 end
 for element =1:length(traintorque2);
 Rtraintorque(end+1)=traintorque2(element);
 end
 for element =1:length(testtorque1);
 Rtesttorque(end+1)=testtorque1(element);
 end
 for element =1:length(testtorque2);
 Rtesttorque(end+1)=testtorque2(element);
 end
 end

 end

 for Rtrial = 1:length(R_emg); %collect emg data for current trial
 stridetime1=R_stridetime(Rtrials(Rtrial),2);
 stridetime1=table2array(stridetime1);

 stridetime2=R_stridetime(Rtrials(Rtrial),3);
 stridetime2=table2array(stridetime2);

 removeentries1=round((delay/stridetime1));
 removeentries2=round(delay/stridetime2);

 EMG=R_emg(Rtrial,2);
 EMG=EMG{1};

 quadEMG1=EMG(:,1);
 quadEMG1=table2array(quadEMG1)';

 hamEMG1=EMG(:,3);
 hamEMG1=table2array(hamEMG1)';

 quadEMG2=EMG(:,2);
 quadEMG2=table2array(quadEMG2)';

83

 hamEMG2=EMG(:,4);
 hamEMG2=table2array(hamEMG2)';

 trainquadEMG1=quadEMG1(1:end-removeentries1);

 trainhamEMG1=hamEMG1(1:end-removeentries1);

 trainquadEMG2=quadEMG2(1:end-removeentries2);

 trainhamEMG2=hamEMG2(1:end-removeentries2);

 if Rtrial== length(R_emg)
 for element =1:length(trainquadEMG1);
 Rvalquad(end+1)=trainquadEMG1(element);
 end
 for element =1:length(trainquadEMG2);
 Rvalquad(end+1)=trainquadEMG2(element);
 end
 for element =1:length(trainhamEMG1);
 Rvalham(end+1)=trainhamEMG1(element);
 end
 for element =1:length(trainhamEMG2);
 Rvalham(end+1)=trainhamEMG2(element);
 end
 else
 for element =1:length(trainquadEMG1);
 Rtrainquad(end+1)=trainquadEMG1(element);
 end
 for element =1:length(trainquadEMG2);
 Rtrainquad(end+1)=trainquadEMG2(element);
 end
 for element =1:length(trainhamEMG1);
 Rtrainham(end+1)=trainhamEMG1(element);
 end
 for element =1:length(trainhamEMG2);
 Rtrainham(end+1)=trainhamEMG2(element);
 end
 end

 end

%%
 L=v1{2};
 L=struct2cell(L);
 L_emg=L{3};
 L_stridetime=L{5};

 L_emg_trials=L_emg(:,1);
 Ltrials=[];
 for lT = 1:length(L_emg_trials); % right emg data indicies
 lT;
 trialnum=L_emg_trials(lT);
 trialnum=(trialnum{1,1}{1,1});
 k = strsplit(trialnum,':');

84

 %k=cell2mat(k);
 k=(k(2));
 k=cell2mat(k);
 k=strtrim(k);
 k=str2num(k);
 Ltrials=[Ltrials, k] ;% right emg data indicies array
 end

 L_theta=L{1};
 L_torque=L{8};
 for ltrial = Ltrials;

 stridetime1=L_stridetime(ltrial,2);
 stridetime1=table2array(stridetime1);

 removeentries1=round((delay/stridetime1));

 theta=L_theta(ltrial,2);
 theta=table2array(theta{1});

 theta1=theta(:,4);
 theta1=theta1';

 traintheta1=theta1(1:end-removeentries1);
 testtheta1=theta1(removeentries1+1:end);
 if ltrial== Ltrials(end)

 for element =1:length(traintheta1);
 Lvaltheta(end+1)=traintheta1(element);
 end
 for element =1:length(testtheta1);
 Ltargtheta(end+1)=testtheta1(element);
 end
 else
 for element =1:length(traintheta1);
 Ltraintheta(end+1)=traintheta1(element);
 end
 for element =1:length(testtheta1);
 Ltesttheta(end+1)=testtheta1(element);
 end
 end

 torque=L_torque(ltrial,2);
 torque=table2array(torque{1});

 torque1=torque(:,4);
 torque1=torque1';

 traintorque1=torque1(1:end-removeentries1);
 testtorque1=torque1(removeentries1+1:end);

 if ltrial== Ltrials(end)
 for element =1:length(traintorque1);
 Lvaltorque(end+1)=traintorque1(element);
 end

85

 for element =1:length(testtorque1);
 Ltargtorque(end+1)=testtorque1(element);
 end
 else
 for element =1:length(traintorque1);
 Ltraintorque(end+1)=traintorque1(element);
 end
 for element =1:length(testtorque1);
 Ltesttorque(end+1)=testtorque1(element);
 end
 end

 end
 for Ltrial = 1:length(L_emg); %collect emg data for current trial
 stridetime1=L_stridetime(Ltrials(Ltrial),2);
 stridetime1=table2array(stridetime1);

 removeentries1=round((delay/stridetime1));

 EMG=L_emg(Ltrial,2);
 EMG=EMG{1};

 quadEMG1=EMG(:,1);
 quadEMG1=table2array(quadEMG1)';

 hamEMG1=EMG(:,2);
 hamEMG1=table2array(hamEMG1)';

 trainquadEMG1=quadEMG1(1:end-removeentries1);

 trainhamEMG1=hamEMG1(1:end-removeentries1);

 testquadEMG1=quadEMG1(removeentries1+1:end);

 testhamEMG1=hamEMG1(removeentries1+1:end);

 if Ltrial== length(L_emg)
 for element =1:length(trainquadEMG1);
 Lvalquad(end+1)=trainquadEMG1(element);
 end
 for element =1:length(trainhamEMG1);
 Lvalham(end+1)=trainhamEMG1(element);
 end
 for element =1:length(testquadEMG1);
 Ltargquad(end+1)=testquadEMG1(element);
 end
 for element =1:length(testhamEMG1);
 Ltargham(end+1)=testhamEMG1(element);
 end
 else

86

 for element =1:length(trainquadEMG1);
 Ltrainquad(end+1)=trainquadEMG1(element);
 end
 for element =1:length(trainhamEMG1);
 Ltrainham(end+1)=trainhamEMG1(element);
 end
 for element =1:length(testquadEMG1);
 Ltestquad(end+1)=testquadEMG1(element);
 end
 for element =1:length(testhamEMG1);
 Ltestham(end+1)=testhamEMG1(element);
 end
 end

 end
 end
end

%%%
LEG=leg
if LEG== "L"
 Input=[Ltrainquad;Ltrainham;Ltraintheta;Ltraintorque];
 Target=[Ltesttheta;Ltesttorque];
 validation=[Lvalquad;Lvalham;Lvaltheta;Lvaltorque];
 validationTarget=[Ltargtheta;Ltargtorque];
 time=[1:length(validation)];
else
 Input=[Rtrainquad;Rtrainham;Rtraintheta;Rtraintorque];
 Target=[Rtesttheta;Rtesttorque];
 validation=[Rvalquad;Rvalham;Rvaltheta;Rvaltorque];
 validationTarget=[Rtargtheta;Rtargtorque];
 time=[1:length(validation)];
end

 Appendix 1.3: Knee Data Extraction Function:

function[Input,Target,validation,validationTarget,time]=kneeExtract(delay, leg,sub)
FileName = 'Processed_Data.mat';
for i = sub;
 delay=delay
 Ltraintheta=[];
 Ltraintorque=[];
 Rtraintheta=[];
 Rtraintorque=[];
 Ltesttheta=[];
 Ltesttorque=[];
 Rtesttheta=[];
 Rtesttorque=[];

87

 Rvaltheta=[];
 Rvaltorque=[];

 Lvaltheta=[];
 Lvaltorque=[];

 Rtargtheta=[];
 Ltargtheta=[];

 Rtargtorque=[];
 Ltargtorque=[];

 FolderName = sprintf('E:\\documents\\matlab scripts\\knee engle emg--
RESEARCH\\knee angle emg\\Participant%i\\',i);
 File = fullfile(FolderName, FileName);
 participantData = load(File);
 participantData = struct2cell(participantData);
 velocities = participantData{1};
 velocities=struct2cell(velocities);
 for v = 1:length(velocities) %all walking velocities
 v1=velocities{v}; %current walking velocity
 v1=struct2cell(v1);
 R=v1{1};
 R=struct2cell(R);
 R_emg=R{2};
 R_stridetime=R{5};

 R_emg_trials=R_emg(:,1);
 Rtrials=[];
 for rT = 1:length(R_emg_trials); % right emg data indicies
 rT;
 trialnum=R_emg_trials(rT);
 trialnum=(trialnum{1,1}{1,1});
 k = strsplit(trialnum,':');
 %k=cell2mat(k);;
 k=(k(2));
 k=cell2mat(k);
 k=strtrim(k);
 k=str2num(k);
 Rtrials=[Rtrials, k]; % right emg data indicies array
 end
 Rtrials;

 R_theta=R{1};
 R_torque=R{8};
 for rtrial = Rtrials;

 stridetime1=R_stridetime(rtrial,2);
 stridetime1=table2array(stridetime1);

 stridetime2=R_stridetime(rtrial,3);
 stridetime2=table2array(stridetime2);

88

 removeentries1=round((delay/stridetime1));
 removeentries2=round(delay/stridetime2);

 theta=R_theta(rtrial,2);
 theta=table2array(theta{1});

 theta1=theta(:,7);
 theta1=theta1';

 traintheta1=theta1(1:end-removeentries1);
 testtheta1=theta1(removeentries1+1:end);

 theta2=theta(:,10);
 theta2=theta2';

 traintheta2=theta2(1:end-removeentries2);
 testtheta2=theta2(removeentries2+1:end);
 if rtrial == Rtrials(end)
 for element =1:length(traintheta1);
 Rvaltheta(end+1)=traintheta1(element);
 end
 for element =1:length(traintheta2);
 Rvaltheta(end+1)=traintheta2(element);
 end
 for element =1:length(testtheta1);
 Rtargtheta(end+1)=testtheta1(element);
 end
 for element =1:length(testtheta2);
 Rtargtheta(end+1)=testtheta2(element);
 end
 else
 for element =1:length(traintheta1);
 Rtraintheta(end+1)=traintheta1(element);
 end
 for element =1:length(traintheta2);
 Rtraintheta(end+1)=traintheta2(element);
 end
 for element =1:length(testtheta1);
 Rtesttheta(end+1)=testtheta1(element);
 end
 for element =1:length(testtheta2);
 Rtesttheta(end+1)=testtheta2(element);
 end
 end

 torque=R_torque(rtrial,2);
 torque=table2array(torque{1});

 torque1=torque(:,7);
 torque1=torque1';

 traintorque1=torque1(1:end-removeentries1);
 testtorque1=torque1(removeentries1+1:end);

89

 torque2=torque(:,10);
 torque2=torque2';

 traintorque2=torque2(1:end-removeentries2);
 testtorque2=torque2(removeentries2+1:end);

 if rtrial == Rtrials(end)
 for element =1:length(traintorque1);
 Rvaltorque(end+1)=traintorque1(element);
 end
 for element =1:length(traintorque2);
 Rvaltorque(end+1)=traintorque2(element);
 end
 for element =1:length(testtorque1);
 Rtargtorque(end+1)=testtorque1(element);
 end
 for element =1:length(testtorque2);
 Rtargtorque(end+1)=testtorque2(element);
 end
 else
 for element =1:length(traintorque1);
 Rtraintorque(end+1)=traintorque1(element);
 end
 for element =1:length(traintorque2);
 Rtraintorque(end+1)=traintorque2(element);
 end
 for element =1:length(testtorque1);
 Rtesttorque(end+1)=testtorque1(element);
 end
 for element =1:length(testtorque2);
 Rtesttorque(end+1)=testtorque2(element);
 end
 end

 end

%%
 L=v1{2};
 L=struct2cell(L);
 L_emg=L{2};
 L_stridetime=L{5};

 L_emg_trials=L_emg(:,1);
 Ltrials=[];
 for lT = 1:length(L_emg_trials); % right emg data indicies
 lT;
 trialnum=L_emg_trials(lT);
 trialnum=(trialnum{1,1}{1,1});
 k = strsplit(trialnum,':');

90

 %k=cell2mat(k);
 k=(k(2));
 k=cell2mat(k);
 k=strtrim(k);
 k=str2num(k);
 Ltrials=[Ltrials, k] ;% right emg data indicies array
 end

 L_theta=L{1};
 L_torque=L{8};
 for ltrial = Ltrials;

 stridetime1=L_stridetime(ltrial,2);
 stridetime1=table2array(stridetime1);

 removeentries1=round((delay/stridetime1));

 theta=L_theta(ltrial,2);
 theta=table2array(theta{1});

 theta1=theta(:,1);
 theta1=theta1';

 traintheta1=theta1(1:end-removeentries1);
 testtheta1=theta1(removeentries1+1:end);
 if ltrial== Ltrials(end)

 for element =1:length(traintheta1);
 Lvaltheta(end+1)=traintheta1(element);
 end
 for element =1:length(testtheta1);
 Ltargtheta(end+1)=testtheta1(element);
 end
 else
 for element =1:length(traintheta1);
 Ltraintheta(end+1)=traintheta1(element);
 end
 for element =1:length(testtheta1);
 Ltesttheta(end+1)=testtheta1(element);
 end
 end

 torque=L_torque(ltrial,2);
 torque=table2array(torque{1});

 torque1=torque(:,1);
 torque1=torque1';

 traintorque1=torque1(1:end-removeentries1);
 testtorque1=torque1(removeentries1+1:end);

 if ltrial== Ltrials(end)
 for element =1:length(traintorque1);
 Lvaltorque(end+1)=traintorque1(element);
 end

91

 for element =1:length(testtorque1);
 Ltargtorque(end+1)=testtorque1(element);
 end
 else
 for element =1:length(traintorque1);
 Ltraintorque(end+1)=traintorque1(element);
 end
 for element =1:length(testtorque1);
 Ltesttorque(end+1)=testtorque1(element);
 end
 end

 end
 end
end

%%%
LEG=leg
if LEG== "L"
 Input=[Ltraintheta;Ltraintorque];
 Target=[Ltesttheta;Ltesttorque];
 validation=[Lvaltheta;Lvaltorque];
 validationTarget=[Ltargtheta;Ltargtorque];
 time=[1:length(validation)];
else
 Input=[Rtraintheta;Rtraintorque];
 Target=[Rtesttheta;Rtesttorque];
 validation=[Rvaltheta;Rvaltorque];
 validationTarget=[Rtargtheta;Rtargtorque];
 time=[1:length(validation)];
end

Appendix 2: Batch Network Training/ testing Code

 Appendix 2.1: Knee Network Training/Testing Code:

clc
%clear all
%%%%%%ntstool
delay=[50,100,150];
LEG=["R","L"];
sub=[1,2,3,8,9,10,11,12,13,14];
row=1;
for del = delay
 for leg = LEG
 row=1;
 for subject = sub
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(del,
leg,subject);
 Input=KInput;
 Target=KTarget;

92

 done =trainnetwork(Input,Target,del, leg,subject);
 A=Kvalidation;
 B=[A(1,1:2);A(2,1:2);A(3,1:2);A(4,1:2)];
 network=sprintf('P%d_%c_K_Pred_%d', subject, leg, del);
 network=str2func(network);
 [output,xfin]=network(A,B);
 subject
 leg
 del
 KThetaRMSE= sqrt(mse(KvalidationTarget(1,:),output(1,:)))
 KTorqueRMSE=sqrt(mse(KvalidationTarget(2,:),output(2,:)))
 row=row+1;
 end
 end
end

 Appendix 2.2: Knee-Ankle Network Training/Testing Code:

clc
%clear all
%%%%%%ntstool
delay=[50,100,150];
LEG=["R","L"];
sub=[10,11,12,13,14];
row=1;
for del = delay
 for leg = LEG
 row=1;
 for subject = sub
 [AInput,ATarget,Avalidation,AvalidationTarget,Atime]=ankleExtract(del,
leg,subject);
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(del,
leg,subject);
 Input=[KInput;AInput];
 Target=[KTarget;ATarget];
 %done =trainnetwork_KA(Input,Target,del, leg,subject);
 A=[Kvalidation;Avalidation];

B=[A(1,1:2);A(2,1:2);A(3,1:2);A(4,1:2);A(5,1:2);A(6,1:2);A(7,1:2);A(8,1:2)];
 network=sprintf('P%d_%c_KA_Pred_%d', subject, leg, del);
 network=str2func(network);
 [output,xfin]=network(A,B);
 subject
 leg
 del
 KThetaRMSE= sqrt(mse(KvalidationTarget(1,:),output(1,:)))
 KTorqueRMSE=sqrt(mse(KvalidationTarget(2,:),output(2,:)))
 AThetaRMSE= sqrt(mse(AvalidationTarget(1,:),output(3,:)))
 ATorqueRMSE=sqrt(mse(AvalidationTarget(2,:),output(4,:)))
 row=row+1;
 end
 end
end

93

 Appendix 2.3: Knee-Ankle-Hip Network Training/Testing Code:

clc
%clear all
%%%%%%ntstool
delay=[50,100,150];
LEG=["R","L"];
sub=[10,11,12,13,14];
row=1;
for del = delay
 for leg = LEG
 row=1;
 for subject = sub
 [AInput,ATarget,Avalidation,AvalidationTarget,Atime]=ankleExtract(del,
leg,subject);
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(del,
leg,subject);
 [HInput,HTarget,Hvalidation,HvalidationTarget,Htime]=hipExtract(del,
leg,subject);
 Input=[KInput;AInput;HInput];
 Target=[KTarget;ATarget;HTarget];

 %done =trainnetwork_KAH_noemg(Input,Target,del, leg,subject);
 A=[Kvalidation;Avalidation;Hvalidation];

B=[A(1,1:2);A(2,1:2);A(3,1:2);A(4,1:2);A(5,1:2);A(6,1:2);A(7,1:2);A(8,1:2);A(9,1:2);A
(10,1:2)];
 network=sprintf('P%d_%c_KAH_Pred_%d', subject, leg, del);
 network=str2func(network);
 [output,xfin]=network(A,B);
 subject
 leg
 del
 KThetaRMSE= sqrt(mse(KvalidationTarget(1,:),output(1,:)))
 KTorqueRMSE=sqrt(mse(KvalidationTarget(2,:),output(2,:)))
 AThetaRMSE= sqrt(mse(AvalidationTarget(1,:),output(3,:)))
 ATorqueRMSE=sqrt(mse(AvalidationTarget(2,:),output(4,:)))
 HThetaRMSE= sqrt(mse(HvalidationTarget(1,:),output(5,:)))
 HTorqueRMSE=sqrt(mse(HvalidationTarget(2,:),output(6,:)))
 row=row+1;
 end
 end
end

 Appendix 2.4: Knee-Ankle-Hip- No EMG Network Training/Testing Code:

clc
%clear all
%%%%%%ntstool
delay=[50,100,150];
LEG=["R","L"];
sub=[1,2,3,8,9,10,11,12,13,14];
row=1;

94

for del = delay
 for leg = LEG
 row=1;
 for subject = sub
 [AInput,ATarget,Avalidation,AvalidationTarget,Atime]=ankleExtract(del,
leg,subject);
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(del,
leg,subject);
 [HInput,HTarget,Hvalidation,HvalidationTarget,Htime]=hipExtract(del,
leg,subject);
 Input=[KInput(3:4,:);AInput(3:4,:);HInput];
 Target=[KTarget;ATarget;HTarget];

 %done =trainnetwork_KAH_noemg(Input,Target,del, leg,subject);
 A=[Kvalidation(3:4,:);Avalidation(3:4,:);Hvalidation];
 B=[A(1,1:2);A(2,1:2);A(3,1:2);A(4,1:2);A(5,1:2);A(6,1:2)];
 network=sprintf('P%d_%c_KAH_Pred_%d_noemg', subject, leg, del);
 network=str2func(network);
 [output,xfin]=network(A,B);
 subject
 leg
 del
 KThetaRMSE= sqrt(mse(KvalidationTarget(1,:),output(1,:)))
 KTorqueRMSE=sqrt(mse(KvalidationTarget(2,:),output(2,:)))
 AThetaRMSE= sqrt(mse(AvalidationTarget(1,:),output(3,:)))
 ATorqueRMSE=sqrt(mse(AvalidationTarget(2,:),output(4,:)))
 HThetaRMSE= sqrt(mse(HvalidationTarget(1,:),output(5,:)))
 HTorqueRMSE=sqrt(mse(HvalidationTarget(2,:),output(6,:)))
 row=row+1;
 end
 end
end

Appendix 4: Single Network Training Function

 Appendix 4.1: Knee Network Training Function:

function[done]=trainnetwork(Input,Target,delay, LEG,sub)
% Solve an Input-Output Time-Series Problem with a Time Delay Neural Network
% Script generated by Neural Time Series app.
% Created 17-Jun-2022 03:57:37
%
% This script assumes these variables are defined:
%
% Input - input time series.
% Target - target time series.

X = tonndata(Input,true,false);
T = tonndata(Target,true,false);

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.

95

% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainbr'; %bayesian regularization.

% Create a Time Delay Network
inputDelays = 1:2;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize,trainFcn);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares timeseries data for a particular network,
% shifting time by the minimum amount to fill input states and layer
% states. Using PREPARETS allows you to keep your original time series data
% unchanged, while easily customizing it for networks with differing
% numbers of delays, with open loop or closed loop feedback modes.
[x,xi,ai,t] = preparets(net,X,T);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,x,t,xi,ai);
pathname=sprintf('E:\\documents\\matlab scripts\\knee engle emg--
RESEARCH\\kneeModelsv2\\P%d_%c_K_Pred_%d',sub, LEG,delay);
genFunction(net,pathname,'MatrixOnly','yes')
% Test the Network
y = net(x,xi,ai);
e = gsubtract(t,y);
performance = perform(net,t,y)

% View the Network
%view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotresponse(t,y)
%figure, ploterrcorr(e)
%figure, plotinerrcorr(x,e)

% Step-Ahead Prediction Network
% For some applications it helps to get the prediction a timestep early.
% The original network returns predicted y(t+1) at the same time it is
% given x(t+1). For some applications such as decision making, it would
% help to have predicted y(t+1) once x(t) is available, but before the
% actual y(t+1) occurs. The network can be made to return its output a
% timestep early by removing one delay so that its minimal tap delay is now
% 0 instead of 1. The new network returns the same outputs as the original
% network, but outputs are shifted left one timestep.
nets = removedelay(net);
%netname=sprintf('P%d_%c_Pred_%d',sub, LEG,delay)

96

%pathname=sprintf('E:\\documents\\matlab scripts\\knee engle emg--
RESEARCH\\kneeModelsv2\\P%d_%c_K_Pred_%d',sub, LEG,delay)
%genFunction(nets,pathname,'MatrixOnly','yes')
nets.name = [net.name ' - Predict One Step Ahead'];
%view(nets)
[xs,xis,ais,ts] = preparets(nets,X,T);
ys = nets(xs,xis,ais);
stepAheadPerformance = perform(nets,ts,ys);
done =1;

 Appendix 4.2: Knee-Ankle Network Training Function:

function[done]=trainnetwork_KA(Input,Target,delay, LEG,sub)
% Solve an Input-Output Time-Series Problem with a Time Delay Neural Network
% Script generated by Neural Time Series app.
% Created 17-Jun-2022 03:57:37
%
% This script assumes these variables are defined:
%
% Input - input time series.
% Target - target time series.

X = tonndata(Input,true,false);
T = tonndata(Target,true,false);

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainbr'; %bayesian regularization.

% Create a Time Delay Network
inputDelays = 1:2;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize,trainFcn);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares timeseries data for a particular network,
% shifting time by the minimum amount to fill input states and layer
% states. Using PREPARETS allows you to keep your original time series data
% unchanged, while easily customizing it for networks with differing
% numbers of delays, with open loop or closed loop feedback modes.
[x,xi,ai,t] = preparets(net,X,T);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,x,t,xi,ai);

97

pathname=sprintf('E:\\documents\\matlab scripts\\knee engle emg--RESEARCH\\knee-
ankle-models\\P%d_%c_KA_Pred_%d',sub, LEG,delay);
genFunction(net,pathname,'MatrixOnly','yes')
% Test the Network
y = net(x,xi,ai);
e = gsubtract(t,y);
performance = perform(net,t,y)

% View the Network
%view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotresponse(t,y)
%figure, ploterrcorr(e)
%figure, plotinerrcorr(x,e)

% Step-Ahead Prediction Network
% For some applications it helps to get the prediction a timestep early.
% The original network returns predicted y(t+1) at the same time it is
% given x(t+1). For some applications such as decision making, it would
% help to have predicted y(t+1) once x(t) is available, but before the
% actual y(t+1) occurs. The network can be made to return its output a
% timestep early by removing one delay so that its minimal tap delay is now
% 0 instead of 1. The new network returns the same outputs as the original
% network, but outputs are shifted left one timestep.
nets = removedelay(net);
%netname=sprintf('P%d_%c_Pred_%d',sub, LEG,delay)
%pathname=sprintf('E:\\documents\\matlab scripts\\knee engle emg--
RESEARCH\\kneeModelsv2\\P%d_%c_K_Pred_%d',sub, LEG,delay)
%genFunction(nets,pathname,'MatrixOnly','yes')
nets.name = [net.name ' - Predict One Step Ahead'];
%view(nets)
[xs,xis,ais,ts] = preparets(nets,X,T);
ys = nets(xs,xis,ais);
stepAheadPerformance = perform(nets,ts,ys);
done =1;

 Appendix 4.3: Knee-Ankle-Hip Network Training Function:

function[done]=trainnetwork_KA(Input,Target,delay, LEG,sub)
% Solve an Input-Output Time-Series Problem with a Time Delay Neural Network
% Script generated by Neural Time Series app.
% Created 17-Jun-2022 03:57:37
%
% This script assumes these variables are defined:
%
% Input - input time series.
% Target - target time series.

98

X = tonndata(Input,true,false);
T = tonndata(Target,true,false);

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainbr'; %bayesian regularization.

% Create a Time Delay Network
inputDelays = 1:2;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize,trainFcn);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares timeseries data for a particular network,
% shifting time by the minimum amount to fill input states and layer
% states. Using PREPARETS allows you to keep your original time series data
% unchanged, while easily customizing it for networks with differing
% numbers of delays, with open loop or closed loop feedback modes.
[x,xi,ai,t] = preparets(net,X,T);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,x,t,xi,ai);
pathname=sprintf('E:\\documents\\matlab scripts\\knee engle emg--RESEARCH\\knee-
ankle-hip-models\\P%d_%c_KAH_Pred_%d',sub, LEG,delay);
genFunction(net,pathname,'MatrixOnly','yes')
% Test the Network
y = net(x,xi,ai);
e = gsubtract(t,y);
performance = perform(net,t,y)

% View the Network
%view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotresponse(t,y)
%figure, ploterrcorr(e)
%figure, plotinerrcorr(x,e)

% Step-Ahead Prediction Network
% For some applications it helps to get the prediction a timestep early.
% The original network returns predicted y(t+1) at the same time it is
% given x(t+1). For some applications such as decision making, it would

99

% help to have predicted y(t+1) once x(t) is available, but before the
% actual y(t+1) occurs. The network can be made to return its output a
% timestep early by removing one delay so that its minimal tap delay is now
% 0 instead of 1. The new network returns the same outputs as the original
% network, but outputs are shifted left one timestep.
nets = removedelay(net);
%netname=sprintf('P%d_%c_Pred_%d',sub, LEG,delay)
%pathname=sprintf('E:\\documents\\matlab scripts\\knee engle emg--
RESEARCH\\kneeModelsv2\\P%d_%c_K_Pred_%d',sub, LEG,delay)
%genFunction(nets,pathname,'MatrixOnly','yes')
nets.name = [net.name ' - Predict One Step Ahead'];
%view(nets)
[xs,xis,ais,ts] = preparets(nets,X,T);
ys = nets(xs,xis,ais);
stepAheadPerformance = perform(nets,ts,ys);
done =1;

 Appendix 4.4: Knee-Ankle-Hip- No EMG Network Training Function:

function[done]=trainnetwork_KA(Input,Target,delay, LEG,sub)
% Solve an Input-Output Time-Series Problem with a Time Delay Neural Network
% Script generated by Neural Time Series app.
% Created 17-Jun-2022 03:57:37
%
% This script assumes these variables are defined:
%
% Input - input time series.
% Target - target time series.

X = tonndata(Input,true,false);
T = tonndata(Target,true,false);

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainbr'; %bayesian regularization.

% Create a Time Delay Network
inputDelays = 1:2;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize,trainFcn);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares timeseries data for a particular network,
% shifting time by the minimum amount to fill input states and layer
% states. Using PREPARETS allows you to keep your original time series data
% unchanged, while easily customizing it for networks with differing
% numbers of delays, with open loop or closed loop feedback modes.
[x,xi,ai,t] = preparets(net,X,T);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;

100

net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,x,t,xi,ai);
pathname=sprintf('E:\\documents\\matlab scripts\\knee engle emg--RESEARCH\\knee-
ankle-hip-models-noemg\\P%d_%c_KAH_Pred_%d_noemg',sub, LEG,delay);
genFunction(net,pathname,'MatrixOnly','yes')
% Test the Network
y = net(x,xi,ai);
e = gsubtract(t,y);
performance = perform(net,t,y)

% View the Network
%view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotresponse(t,y)
%figure, ploterrcorr(e)
%figure, plotinerrcorr(x,e)

% Step-Ahead Prediction Network
% For some applications it helps to get the prediction a timestep early.
% The original network returns predicted y(t+1) at the same time it is
% given x(t+1). For some applications such as decision making, it would
% help to have predicted y(t+1) once x(t) is available, but before the
% actual y(t+1) occurs. The network can be made to return its output a
% timestep early by removing one delay so that its minimal tap delay is now
% 0 instead of 1. The new network returns the same outputs as the original
% network, but outputs are shifted left one timestep.
nets = removedelay(net);
%netname=sprintf('P%d_%c_Pred_%d',sub, LEG,delay)
%pathname=sprintf('E:\\documents\\matlab scripts\\knee engle emg--
RESEARCH\\kneeModelsv2\\P%d_%c_K_Pred_%d',sub, LEG,delay)
%genFunction(nets,pathname,'MatrixOnly','yes')
nets.name = [net.name ' - Predict One Step Ahead'];
%view(nets)
[xs,xis,ais,ts] = preparets(nets,X,T);
ys = nets(xs,xis,ais);
stepAheadPerformance = perform(nets,ts,ys);
done =1;

101

Appendix 5: Principal Component Analysis Code

 Appendix 5.1: Principal Component Analysis Code for Knee-Ankle-Hip Networks

clc
%clear all
%%%%%%ntstool
delay=[0];
LEG=["R"];
sub=[1];
row=1;
for del = delay
 for leg = LEG
 row=1;
 for subject = sub
 [AInput,ATarget,Avalidation,AvalidationTarget,Atime]=ankleExtract(del,
leg,subject);
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(del,
leg,subject);
 [HInput,HTarget,Hvalidation,HvalidationTarget,Htime]=hipExtract(del,
leg,subject);
 Input=[KInput;AInput;HInput]';
 [coeff,score,latent,tsquared,explained] =pca(Input);
 coeff
 explained

 end
 end
end

Appendix 6: Network Grand Average Error Code

 Appendix 6.1: Knee Network Grand Average Error Code:

clc
%clear all
%%%%%%ntstool
delay=150
LEG="L"
sub=[1,2,3,8,9,10,11,12,13,14]
futureangle=[]
futuretorque=[]
predictedangle=[]
predictedtorque=[]
row=1
for subject = sub
 futureangle=[]
 futuretorque=[]
 predictedangle=[]
 predictedtorque=[]
 subject
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(delay,
LEG,subject);

102

 Input=KInput;
 Target=KTarget;
 A=Kvalidation;
 B=[A(1,1:2);A(2,1:2);A(3,1:2);A(4,1:2)];
 angle=KvalidationTarget(1,:);
 torque=KvalidationTarget(2,:);
 futureangle(row,:)=angle;
 futuretorque(row,:)=torque;
 network=sprintf('P%d_%c_K_Pred_%d', subject, LEG, delay)
 network=str2func(network)
 [output,xfin]=network(A,B);
 predictedangle(row,:)=output(1,:);
 predictedtorque(row,:)=output(2,:);
 row=row+1;
end
grndavg_angle=mean(futureangle);
grndavg_torque=mean(futuretorque);
grndavg_predictedangle=mean(predictedangle);
grndavg_predictedtorque=mean(predictedtorque);
anglediff=abs(grndavg_angle-grndavg_predictedangle);
torquediff=(grndavg_torque-grndavg_predictedtorque);

%%%
figure(1)
subplot(2,1,1)
plot(Ktime,grndavg_predictedangle);
hold on;
plot(Ktime,grndavg_angle);
legend('predicted theta','actual theta')
ylabel('Joint Angle (degrees)')
subplot(2,1,2)

plot(Ktime,grndavg_predictedtorque);
hold on;
plot(Ktime,grndavg_torque);
hold off;
legend('predicted T','actual T')
xlabel('Normalized Stride Time (1001 points/stride)')
ylabel('Torque (N-m)')
%%%

figure(2)
subplot(2,1,1)
plot(Ktime,grndavg_angle,'color','r');
hold on;
plot(Ktime,grndavg_angle+anglediff);
patch([Ktime fliplr(Ktime)], [grndavg_angle fliplr(grndavg_angle+anglediff)], 'r')
ylabel('Joint Angle (degrees)')
hold off

subplot(2,1,2)
plot(Ktime,grndavg_torque,'color','r');
hold on;
plot(Ktime,grndavg_torque+torquediff);

103

patch([Ktime fliplr(Ktime)], [grndavg_torque fliplr(grndavg_torque+torquediff)], 'r')
xlabel('Normalized Stride Time (1001 points/stride)')
ylabel('Torque (N-m)')
hold off;

 Appendix 6.2: Knee-Ankle Network Grand Average Error Code:

clc
clear all
%%%%%%ntstool
delay=150
LEG="L"
sub=[1,2,3,8,9,10,11,12,13,14]
row=1
for subject = sub
 future_ankle_angle=[]
 future_ankle_torque=[]
 predicted_ankle_angle=[]
 predicted_ankle_torque=[]
 future_knee_angle=[]
 future_knee_torque=[]
 predicted_knee_angle=[]
 predicted_knee_torque=[]
 subject
 [AInput,ATarget,Avalidation,AvalidationTarget,Atime]=ankleExtract(delay,
LEG,subject);
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(delay,
LEG,subject);
 Input=[KInput;AInput];
 Target=[KTarget;ATarget];

 %done =trainnetwork_KAH_noemg(Input,Target,del, leg,subject);
 A=[Kvalidation;Avalidation];
 B=[A(1,1:2);A(2,1:2);A(3,1:2);A(4,1:2);A(5,1:2);A(6,1:2);A(7,1:2);A(8,1:2)];
 %angle=KvalidationTarget(1,:);
 %torque=KvalidationTarget(2,:);
 future_ankle_angle(row,:)=AvalidationTarget(1,:);
 future_ankle_torque(row,:)=AvalidationTarget(2,:);
 future_knee_angle(row,:)=KvalidationTarget(1,:);
 future_knee_torque(row,:)=KvalidationTarget(2,:);
 network=sprintf('P%d_%c_KA_Pred_%d', subject, LEG, delay)
 network=str2func(network)
 [output,xfin]=network(A,B);
 predicted_knee_angle(row,:)=output(1,:);
 predicted_knee_torque(row,:)=output(2,:);
 predicted_ankle_angle(row,:)= output(3,:);
 predicted_ankle_torque(row,:)=output(4,:);
 row=row+1;
end
grndavg_knee_angle=mean(future_knee_angle);
grndavg_knee_torque=mean(future_knee_torque);
grndavg_ankle_angle=mean(future_ankle_angle);
grndavg_ankle_torque=mean(future_ankle_torque);

104

grndavg_predicted_knee_angle=mean(predicted_knee_angle);
grndavg_predicted_knee_torque=mean(predicted_knee_torque);
grndavg_predicted_ankle_angle=mean(predicted_ankle_angle);
grndavg_predicted_ankle_torque=mean(predicted_ankle_torque);

knee_anglediff=abs(grndavg_knee_angle-grndavg_predicted_knee_angle);
ankle_anglediff=abs(grndavg_ankle_angle-grndavg_predicted_ankle_angle);

knee_torquediff=abs(grndavg_knee_torque-grndavg_predicted_knee_torque);
ankle_torquediff=abs(grndavg_ankle_torque-grndavg_predicted_ankle_torque);

%%%
figure(1)
subplot(4,1,1)
plot(Ktime,grndavg_knee_angle,'color','r');
hold on;
plot(Ktime,grndavg_knee_angle+knee_anglediff);
patch([Ktime fliplr(Ktime)], [grndavg_knee_angle
fliplr(grndavg_knee_angle+knee_anglediff)], 'r')
ylabel('Joint Angle (degrees)')
legend('Knee Angle Error')
hold off

subplot(4,1,2)
plot(Ktime,grndavg_knee_torque,'color','r');
hold on;
plot(Ktime,grndavg_knee_torque+knee_torquediff);
patch([Ktime fliplr(Ktime)], [grndavg_knee_torque
fliplr(grndavg_knee_torque+knee_torquediff)], 'r')
ylabel('Torque (N-m)')
legend('Knee Torque Error')
%xlabel('Normalized Stride Time (1001 points/stride)')
hold off;
%%%

%figure(2)
subplot(4,1,3)
plot(Atime,grndavg_ankle_angle,'color','r');
hold on;
plot(Atime,grndavg_ankle_angle+ankle_anglediff);
patch([Atime fliplr(Atime)], [grndavg_ankle_angle
fliplr(grndavg_ankle_angle+ankle_anglediff)], 'r')
ylabel('Joint Angle (degrees)')
legend('Ankle Angle Error')
hold off

subplot(4,1,4)
plot(Atime,grndavg_ankle_torque,'color','r');
hold on;
plot(Atime,grndavg_ankle_torque+ankle_torquediff);
patch([Atime fliplr(Atime)], [grndavg_ankle_torque
fliplr(grndavg_ankle_torque+ankle_torquediff)], 'r')

105

ylabel('Torque (N-m)')
legend('Ankle Torque Error')
xlabel('Normalized Stride Time (1001 points/stride)')
hold off;

%%%

 Appendix 6.3: Knee-Ankle-Hip Network Grand Average Error Code:

clc
clear all
%%%%%%ntstool
delay=150
LEG="L"
sub=[1,2,3,8,9,10,11,12,13,14]
row=1
for subject = sub
 future_ankle_angle=[]
 future_ankle_torque=[]
 predicted_ankle_angle=[]
 predicted_ankle_torque=[]
 future_knee_angle=[]
 future_knee_torque=[]
 predicted_knee_angle=[]
 predicted_knee_torque=[]
 future_hip_angle=[]
 future_hip_torque=[]
 predicted_hip_angle=[]
 predicted_hip_torque=[]
 subject
 [AInput,ATarget,Avalidation,AvalidationTarget,Atime]=ankleExtract(delay,
LEG,subject);
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(delay,
LEG,subject);
 [HInput,HTarget,Hvalidation,HvalidationTarget,Htime]=hipExtract(delay,
LEG,subject);
 Input=[KInput;AInput;HInput];
 Target=[KTarget;ATarget;HTarget];

 %done =trainnetwork_KAH_noemg(Input,Target,del, leg,subject);
 A=[Kvalidation;Avalidation;Hvalidation];

B=[A(1,1:2);A(2,1:2);A(3,1:2);A(4,1:2);A(5,1:2);A(6,1:2);A(7,1:2);A(8,1:2);A(9,1:2);A
(10,1:2)];
 %angle=KvalidationTarget(1,:);
 %torque=KvalidationTarget(2,:);
 future_ankle_angle(row,:)=AvalidationTarget(1,:);
 future_ankle_torque(row,:)=AvalidationTarget(2,:);
 future_knee_angle(row,:)=KvalidationTarget(1,:);
 future_knee_torque(row,:)=KvalidationTarget(2,:);
 future_hip_angle(row,:)=HvalidationTarget(1,:);
 future_hip_torque(row,:)=HvalidationTarget(2,:);
 network=sprintf('P%d_%c_KAH_Pred_%d', subject, LEG, delay)
 network=str2func(network)

106

 [output,xfin]=network(A,B);
 predicted_knee_angle(row,:)=output(1,:);
 predicted_knee_torque(row,:)=output(2,:);
 predicted_ankle_angle(row,:)= output(3,:);
 predicted_ankle_torque(row,:)=output(4,:);
 predicted_hip_angle(row,:)= output(5,:);
 predicted_hip_torque(row,:)=output(6,:);
 row=row+1;
end
grndavg_knee_angle=mean(future_knee_angle);
grndavg_knee_torque=mean(future_knee_torque);
grndavg_ankle_angle=mean(future_ankle_angle);
grndavg_ankle_torque=mean(future_ankle_torque);
grndavg_hip_angle=mean(future_hip_angle);
grndavg_hip_torque=mean(future_hip_torque);

grndavg_predicted_knee_angle=mean(predicted_knee_angle);
grndavg_predicted_knee_torque=mean(predicted_knee_torque);
grndavg_predicted_ankle_angle=mean(predicted_ankle_angle);
grndavg_predicted_ankle_torque=mean(predicted_ankle_torque);
grndavg_predicted_hip_angle=mean(predicted_hip_angle);
grndavg_predicted_hip_torque=mean(predicted_hip_torque);

knee_anglediff=abs(grndavg_knee_angle-grndavg_predicted_knee_angle);
ankle_anglediff=abs(grndavg_ankle_angle-grndavg_predicted_ankle_angle);
hip_anglediff=abs(grndavg_hip_angle-grndavg_predicted_hip_angle);

knee_torquediff=abs(grndavg_knee_torque-grndavg_predicted_knee_torque);
ankle_torquediff=abs(grndavg_ankle_torque-grndavg_predicted_ankle_torque);
hip_toprquediff=abs(grndavg_hip_torque-grndavg_predicted_hip_torque);

%%%
figure(1)
subplot(6,1,1)
plot(Ktime,grndavg_knee_angle,'color','r');
hold on;
plot(Ktime,grndavg_knee_angle+knee_anglediff);
patch([Ktime fliplr(Ktime)], [grndavg_knee_angle
fliplr(grndavg_knee_angle+knee_anglediff)], 'r')
ylabel('Joint Angle (degrees)')
legend('Knee Angle Error')
hold off

subplot(6,1,2)
plot(Ktime,grndavg_knee_torque,'color','r');
hold on;
plot(Ktime,grndavg_knee_torque+knee_torquediff);
patch([Ktime fliplr(Ktime)], [grndavg_knee_torque
fliplr(grndavg_knee_torque+knee_torquediff)], 'r')
ylabel('Torque (N-m)')
xlabel('Normalized Stride Time (1001 points/stride)')
legend('Knee Torque Error')
hold off;
%%%

107

%figure(1)
subplot(6,1,3)
plot(Atime,grndavg_ankle_angle,'color','r');
hold on;
plot(Atime,grndavg_ankle_angle+ankle_anglediff);
patch([Atime fliplr(Atime)], [grndavg_ankle_angle
fliplr(grndavg_ankle_angle+ankle_anglediff)], 'r')
ylabel('Joint Angle (degrees)')
legend('Ankle Angle Error')
hold off

subplot(6,1,4)
plot(Atime,grndavg_ankle_torque,'color','r');
hold on;
plot(Atime,grndavg_ankle_torque+ankle_torquediff);
patch([Atime fliplr(Atime)], [grndavg_ankle_torque
fliplr(grndavg_ankle_torque+ankle_torquediff)], 'r')
ylabel('Torque (N-m)')
xlabel('Normalized Stride Time (1001 points/stride)')
legend('Ankle Torque Error')
hold off;

%%%

%figure(1)
subplot(6,1,5)
plot(Htime,grndavg_hip_angle,'color','r');
hold on;
plot(Htime,grndavg_hip_angle+hip_anglediff);
patch([Htime fliplr(Htime)], [grndavg_hip_angle
fliplr(grndavg_hip_angle+hip_anglediff)], 'r')
ylabel('Joint Angle (degrees)')
legend('Hip Angle Error')
hold off

subplot(6,1,6)
plot(Htime,grndavg_hip_torque,'color','r');
hold on;
plot(Htime,grndavg_hip_torque+hip_toprquediff);
patch([Htime fliplr(Htime)], [grndavg_hip_torque
fliplr(grndavg_hip_torque+hip_toprquediff)], 'r')
ylabel('Torque (N-m)')
xlabel('Normalized Stride Time (1001 points/stride)')
legend('Hip Torque Error')
hold off;

 Appendix 6.4: Knee-Ankle-Hip- No EMG Grand Average Error Code:

clc
%clear all
%%%%%%ntstool
delay=100
LEG="R"

108

sub=[1,2,3,8,9,10,11,12,13,14]
futureangle=[]
futuretorque=[]
predictedangle=[]
predictedtorque=[]
row=1
for subject = sub
 subject
 [KInput,KTarget,Kvalidation,KvalidationTarget,Ktime]=kneeExtract(delay, LEG,sub);
 A=Kvalidation;
 B=[A(1,1:2);A(2,1:2);A(3,1:2);A(4,1:2)];
 angle=KvalidationTarget(1,:);
 torque=KvalidationTarget(2,:);
 futureangle(row,:)=angle;
 futuretorque(row,:)=torque;
 network=sprintf('P%d_%c_Pred_%d', subject, LEG, delay)
 network=str2func(network)
 [output,xfin]=network(A,B);
 predictedangle(row,:)=output(1,:);
 predictedtorque(row,:)=output(2,:);
 row=row+1;
end
grndavg_angle=mean(futureangle);
grndavg_torque=mean(futuretorque);
grndavg_predictedangle=mean(predictedangle);
grndavg_predictedtorque=mean(predictedtorque);
anglediff=abs(grndavg_angle-grndavg_predictedangle);
torquediff=(grndavg_torque-grndavg_predictedtorque);

%%%
figure(1)
subplot(2,1,1)
plot(Ktime,grndavg_predictedangle);
hold on;
plot(Ktime,grndavg_angle);
legend('predicted theta','actual theta')
ylabel('Joint Angle (degrees)')
subplot(2,1,2)

plot(Ktime,grndavg_predictedtorque);
hold on;
plot(Ktime,grndavg_torque);
hold off;
legend('predicted T','actual T')
xlabel('Normalized Stride Time (1001 points/stride)')
ylabel('Torque (N-m)')
%%%

figure(2)
subplot(2,1,1)
plot(Ktime,grndavg_angle,'color','r');
hold on;
plot(Ktime,grndavg_angle+anglediff);
patch([Ktime fliplr(Ktime)], [grndavg_angle fliplr(grndavg_angle+anglediff)], 'r')

109

hold off

subplot(2,1,2)
plot(Ktime,grndavg_torque,'color','r');
hold on;
plot(Ktime,grndavg_torque+torquediff);
patch([Ktime fliplr(Ktime)], [grndavg_torque fliplr(grndavg_torque+torquediff)], 'r')
hold off;

110

LIST OF REFRENCES

[1]Center For Disease Control, https://www.cdc.gov/media/releases/2018/p0816-disability.html

[2] Coker, Jordan, Howard Chen, Mark C. Schall Jr., Sean Gallagher, and Michael Zabala. 2021. "EMG and Joint Angle-Based

Machine Learning to Predict Future Joint Angles at the Knee" Sensors 21, no. 11: 3622. https://doi.org/10.3390/s21113622

[3] Moreira, L., Figueiredo, J., Fonseca, P. et al. Lower limb kinematic, kinetic, and EMG data from young healthy humans

during walking at controlled speeds. Sci Data 8, 103 (2021). https://doi.org/10.1038/s41597-021-00881-3

[4]Majidi Fard Vatan, H., Nefti-Meziani, S., Davis, S. et al. A review: A Comprehensive Review of Soft and Rigid Wearable

Rehabilitation and Assistive Devices with a Focus on the Shoulder Joint. J Intell Robot Syst 102, 9 (2021).

https://doi.org/10.1007/s10846-021-01353-x

[5] Intisar, Muhatasim, Mohammad Monirujjaman Khan, Mehedi Masud, and Mohammad Shorfuzzaman. "Development of A

Low-Cost Exoskeleton for Rehabilitation and Mobility." In Intelligent Automation & Soft Computing, vol. 31, no. 1, pp. 101-115.

Tech Science Press, 2021.

[6]Franco Molteni, Giulio Gasperini, Giovanni Cannaviello, Eleonora Guanziroli, Exoskeleton and End-Effector Robots for

Upper and Lower Limbs Rehabilitation: Narrative Review, PM&R, Volume 10, Issue 9, Supplement 2, 2018, Pages S174-S188,

ISSN 1934-1482, https://doi.org/10.1016/j.pmrj.2018.06.005.

[7] Setiawan, Joga D., Mochammad Ariyanto, Sri Nugroho, M. Munadi, and Rifky Ismail. "A soft exoskeleton glove

incorporating motor-tendon actuator for hand movements assistance." Int. Rev. Autom. Control 13 (2020): 1-11.

[8] Farfán, F. D., Politti, J. C. & Felice, C. J. Evaluation of EMG processing techniques using Information Theory. Biomed. Eng.
Online 9 (2010).

[9] Lopes, M. C. S., Costa, M. C. A., & Ebecken, N. F. F. (1998). A comparison of methods for customer classification.
Transactions on Information and Communications Technologies, 19. https://doi.org/10.2495/DATA980251

[10] Ma, X.; Liu, Y.; Song, Q.; Wang, C. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using

a Long Short-Term Memory Neural Network and Time-Advanced Feature. Sensors 2020, 20, 4966.

[11] Marzieh Mostafavizadeh Ardestani, Xuan Zhang, Ling Wang, Qin Lian, Yaxiong Liu, Jiankang He, Dichen Li, Zhongmin
Jin, Human lower extremity joint moment prediction: A wavelet neural network approach, Expert Systems with Applications,
Volume 41, Issue 9, 2014, Pages 4422-4433, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2013.11.003.
(https://www.sciencedirect.com/science/article/pii/S0957417413009032)

[12] H. Al-Fahaam, S. Davis and S. Nefti-Meziani, "Wrist rehabilitation exoskeleton robot based on pneumatic soft

actuators," 2016 International Conference for Students on Applied Engineering (ICSAE), 2016, pp. 491-496, doi:

10.1109/ICSAE.2016.7810241.

[13] Xinyi Zhang, Haoping Wang, Yang Tian, Laurent Peyrodie, Xikun Wang, Model-free based neural network control with

time-delay estimation for lower extremity exoskeleton, Neurocomputing, Volume 272, 2018, Pages 178-188, ISSN 0925-2312,

https://doi.org/10.1016/j.neucom.2017.06.055. (https://www.sciencedirect.com/science/article/pii/S0925231217311839)

https://doi.org/10.3390/s21113622
https://doi.org/10.1038/s41597-021-00881-3
https://doi.org/10.1007/s10846-021-01353-x
https://doi.org/10.1016/j.pmrj.2018.06.005
https://www.sciencedirect.com/science/article/pii/S0957417413009032

	Predicting Joint Mechanics using sEMG and Deep Neural Networks
	tmp.1679662743.pdf.UHcpG

