30,174 research outputs found

    A Product Line Systems Engineering Process for Variability Identification and Reduction

    Full text link
    Software Product Line Engineering has attracted attention in the last two decades due to its promising capabilities to reduce costs and time to market through reuse of requirements and components. In practice, developing system level product lines in a large-scale company is not an easy task as there may be thousands of variants and multiple disciplines involved. The manual reuse of legacy system models at domain engineering to build reusable system libraries and configurations of variants to derive target products can be infeasible. To tackle this challenge, a Product Line Systems Engineering process is proposed. Specifically, the process extends research in the System Orthogonal Variability Model to support hierarchical variability modeling with formal definitions; utilizes Systems Engineering concepts and legacy system models to build the hierarchy for the variability model and to identify essential relations between variants; and finally, analyzes the identified relations to reduce the number of variation points. The process, which is automated by computational algorithms, is demonstrated through an illustrative example on generalized Rolls-Royce aircraft engine control systems. To evaluate the effectiveness of the process in the reduction of variation points, it is further applied to case studies in different engineering domains at different levels of complexity. Subject to system model availability, reduction of 14% to 40% in the number of variation points are demonstrated in the case studies.Comment: 12 pages, 6 figures, 2 tables; submitted to the IEEE Systems Journal on 3rd June 201

    Towards the Evolution of Novel Vertical-Axis Wind Turbines

    Full text link
    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency, resulting in an important cost reduction. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.Comment: 14 pages, 11 figure

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    A study to trial the use of inertial non-optical motion capture for ergonomic analysis of manufacturing work

    Get PDF
    It is going to be increasingly important for manufacturing system designers to incorporate human activity data and ergonomic analysis with other performance data in digital design modelling and system monitoring. However, traditional methods of capturing human activity data are not sufficiently accurate to meet the needs of digitised data analysis; qualitative data are subject to bias and imprecision, and optically derived data are hindered by occlusions caused by structures or other people in a working environment. Therefore, to meet contemporary needs for more accurate and objective data, inertial non-optical methods of measurement appear to offer a solution. This article describes a case study conducted within the aerospace manufacturing industry, where data on the human activities involved in aircraft wing system installations was first collected via traditional ethnographic methods and found to have limited accuracy and suitability for digital modelling, but similar human activity data subsequently collected using an automatic non-optical motion capture system in a more controlled environment showed better suitability. Results demonstrate the potential benefits of applying not only the inertial non-optical method in future digital modelling and performance monitoring but also the value of continuing to include qualitative analysis for richer interpretation of important explanatory factors

    Application of bifurcation methods for the prediction of low-speed aircraft ground performance

    Get PDF
    The design of aircraft for ground maneuvers is an essential part in satisfying the demanding requirements of the aircraft operators. Extensive analysis is done to ensure that a new civil aircraft type will adhere to these requirements, for which the nonlinear nature of the problem generally adds to the complexity of such calculations. Small perturbations in velocity, steering angle, or brake application may lead to significant differences in the final turn widths that can be achieved. Here, the U-turn maneuver is analyzed in detail, with a comparison between the two ways in which this maneuver is conducted. A comparison is also made between existing turn-width prediction methods that consist mainly of geometric methods and simulations and a proposed new method that uses dynamical systems theory. Some assumptions are made with regard to the transient behavior, for which it is shown that these assumptions are conservative when an upper bound is chosen for the transient distance. Furthermore, we demonstrate that the results from the dynamical systems analysis are sufficiently close to the results from simulations to be used as a valuable design tool. Overall, dynamical systems methods provide an order-of-magnitude increase in analysis speed and capability for the prediction of turn widths on the ground when compared with simulations. Nomenclature co = oleo damping coefficient, N s2 =m2 cz = tire vertical damping coefficient Fco = damping force in oleo due to the orifice,

    Supporting the automated generation of modular product line safety cases

    Get PDF
    Abstract The effective reuse of design assets in safety-critical Software Product Lines (SPL) would require the reuse of safety analyses of those assets in the variant contexts of certification of products derived from the SPL. This in turn requires the traceability of SPL variation across design, including variation in safety analysis and safety cases. In this paper, we propose a method and tool to support the automatic generation of modular SPL safety case architectures from the information provided by SPL feature modeling and model-based safety analysis. The Goal Structuring Notation (GSN) safety case modeling notation and its modular extensions supported by the D-Case Editor were used to implement the method in an automated tool support. The tool was used to generate a modular safety case for an automotive Hybrid Braking System SPL

    Integrated system to perform surrogate based aerodynamic optimisation for high-lift airfoil

    Get PDF
    This work deals with the aerodynamics optimisation of a generic two-dimensional three element high-lift configuration. Although the high-lift system is applied only during take-off and landing in the low speed phase of the flight the cost efficiency of the airplane is strongly influenced by it [1]. The ultimate goal of an aircraft high lift system design team is to define the simplest configuration which, for prescribed constraints, will meet the take-off, climb, and landing requirements usually expressed in terms of maximum L/D and/or maximum CL. The ability of the calculation method to accurately predict changes in objective function value when gaps, overlaps and element deflections are varied is therefore critical. Despite advances in computer capacity, the enormous computational cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpose of design optimisation. To cut down the cost, surrogate models, also known as metamodels, are constructed from and then used in place of the actual simulation models. This work outlines the development of integrated systems to perform aerodynamics multi-objective optimisation for a three-element airfoil test case in high lift configuration, making use of surrogate models available in MACROS Generic Tools, which has been integrated in our design tool. Different metamodeling techniques have been compared based on multiple performance criteria. With MACROS is possible performing either optimisation of the model built with predefined training sample (GSO) or Iterative Surrogate-Based Optimization (SBO). In this first case the model is build independent from the optimisation and then use it as a black box in the optimisation process. In the second case is needed to provide the possibility to call CFD code from the optimisation process, and there is no need to build any model, it is being built internally during the optimisation process. Both approaches have been applied. A detailed analysis of the integrated design system, the methods as well as th
    • 

    corecore