5 research outputs found

    Real-time edge tracking using a tactile sensor

    Get PDF
    Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented

    A survey of dextrous manipulation

    Get PDF
    technical reportThe development of mechanical end effectors capable of dextrous manipulation is a rapidly growing and quite successful field of research. It has in some sense put the focus on control issues, in particular, how to control these remarkably humanlike manipulators to perform the deft movement that we take for granted in the human hand. The kinematic and control issues surrounding manipulation research are clouded by more basic concerns such as: what is the goal of a manipulation system, is the anthropomorphic or functional design methodology appropriate, and to what degree does the control of the manipulator depend on other sensory systems. This paper examines the potential of creating a general purpose, anthropomorphically motivated, dextrous manipulation system. The discussion will focus on features of the human hand that permit its general usefulness as a manipulator. A survey of machinery designed to emulate these capabilities is presented. Finally, the tasks of grasping and manipulation are examined from the control standpoint to suggest a control paradigm which is descriptive, yet flexible and computationally efficient1

    Biologically-inspired hierarchical architectures for object recognition

    Get PDF
    PhD ThesisThe existing methods for machine vision translate the three-dimensional objects in the real world into two-dimensional images. These methods have achieved acceptable performances in recognising objects. However, the recognition performance drops dramatically when objects are transformed, for instance, the background, orientation, position in the image, and scale. The human’s visual cortex has evolved to form an efficient invariant representation of objects from within a scene. The superior performance of human can be explained by the feed-forward multi-layer hierarchical structure of human visual cortex, in addition to, the utilisation of different fields of vision depending on the recognition task. Therefore, the research community investigated building systems that mimic the hierarchical architecture of the human visual cortex as an ultimate objective. The aim of this thesis can be summarised as developing hierarchical models of the visual processing that tackle the remaining challenges of object recognition. To enhance the existing models of object recognition and to overcome the above-mentioned issues, three major contributions are made that can be summarised as the followings 1. building a hierarchical model within an abstract architecture that achieves good performances in challenging image object datasets; 2. investigating the contribution for each region of vision for object and scene images in order to increase the recognition performance and decrease the size of the processed data; 3. further enhance the performance of all existing models of object recognition by introducing hierarchical topologies that utilise the context in which the object is found to determine the identity of the object. Statement ofHigher Committee For Education Development in Iraq (HCED

    Pose-invariant, model-based object recognition, using linear combination of views and Bayesian statistics

    Get PDF
    This thesis presents an in-depth study on the problem of object recognition, and in particular the detection of 3-D objects in 2-D intensity images which may be viewed from a variety of angles. A solution to this problem remains elusive to this day, since it involves dealing with variations in geometry, photometry and viewing angle, noise, occlusions and incomplete data. This work restricts its scope to a particular kind of extrinsic variation; variation of the image due to changes in the viewpoint from which the object is seen. A technique is proposed and developed to address this problem, which falls into the category of view-based approaches, that is, a method in which an object is represented as a collection of a small number of 2-D views, as opposed to a generation of a full 3-D model. This technique is based on the theoretical observation that the geometry of the set of possible images of an object undergoing 3-D rigid transformations and scaling may, under most imaging conditions, be represented by a linear combination of a small number of 2-D views of that object. It is therefore possible to synthesise a novel image of an object given at least two existing and dissimilar views of the object, and a set of linear coefficients that determine how these views are to be combined in order to synthesise the new image. The method works in conjunction with a powerful optimization algorithm, to search and recover the optimal linear combination coefficients that will synthesize a novel image, which is as similar as possible to the target, scene view. If the similarity between the synthesized and the target images is above some threshold, then an object is determined to be present in the scene and its location and pose are defined, in part, by the coefficients. The key benefits of using this technique is that because it works directly with pixel values, it avoids the need for problematic, low-level feature extraction and solution of the correspondence problem. As a result, a linear combination of views (LCV) model is easy to construct and use, since it only requires a small number of stored, 2-D views of the object in question, and the selection of a few landmark points on the object, the process which is easily carried out during the offline, model building stage. In addition, this method is general enough to be applied across a variety of recognition problems and different types of objects. The development and application of this method is initially explored looking at two-dimensional problems, and then extending the same principles to 3-D. Additionally, the method is evaluated across synthetic and real-image datasets, containing variations in the objects’ identity and pose. Future work on possible extensions to incorporate a foreground/background model and lighting variations of the pixels are examined

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty
    corecore