352 research outputs found

    Experimental and theoretical investigation of the flashback of a swirling, bluff-body stabilised, premixed flame

    Get PDF
    Flashback of an open turbulent, premixed flame in a swirl burner with central bluff-body is considered. The aim is to obtain further understanding of the physical mechanisms responsible for the upstream flame propagation. Previous studies on the same configuration hypothesised that there is an adverse pressure gradient in the direction of flame propagation. In this paper this is further investigated experimentally and theoretically. Static gauge pressure is measured on the surface of the bluff-body during flame flashback. Simultaneously, flame luminosity is imaged at 5 kHz. The results indicate that the static pressure rises downstream of the propagating reactive front. This is, then, discussed in the context of the theory of vortex bursting. An existing theory of flame propagation in the core flow is extended to a configuration similar to that investigated experimentally. The theory, although highly simplified, explains the generation of adverse pressure gradient across the flame and is qualitatively consistent with the experiment

    Non-linear simulations of combustion instabilities with a quasi-1D Navier-Stokes code

    Full text link
    As lean premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems, there is an increasing demand for improved numerical design tools that can predict the occurrence of combustion instabilities with high accuracy. The inherent non-linearities in combustion instabilities can be of crucial importance, and we here propose an approach in which the one-dimensional Navier-Stokes and scalar transport equations are solved for geometries of variable cross-section. The focus is on attached flames, and for this purpose a new phenomenological model for the unsteady heat release from a flame front is introduced. In the attached flame method (AFM) the heat release occurs over the full length of the flame. The non-linear code with the use of the AFM approach is validated against results from an experimental study of thermoacoustic instabilities in oxy-fuel flames by Ditaranto and Hals [Combustion and Flame, 146, 493-512 (2006)]. The numerical simulations are in accordance with the experimental measurements and both the frequencies and the amplitudes of the resonant acoustic pressure modes are reproduced with good accuracy.Comment: Submitted for publication in "Journal of Sound and Vibration" (30 pages, 8 figures

    Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review

    Get PDF
    Hydrogen is receiving increasing attention as a versatile energy vector to help accelerate the transition to a decarbonised energy future. Gas turbines will continue to play a critical role in providing grid stability and resilience in future low-carbon power systems; however, it is recognised that this role is contingent upon achieving increased thermal efficiencies and the ability to operate on carbon-neutral fuels such as hydrogen. An important consideration in the development of gas turbine combustors capable of operating with pure hydrogen or hydrogen-enriched natural gas are the significant changes in thermoacoustic instability characteristics associated with burning these fuels. This article provides a review of the effects of burning hydrogen on combustion dynamics with focus on swirl-stabilised lean-premixed combustors. Experimental and numerical evidence suggests hydrogen can have either a stabilising or destabilising impact on the dynamic state of a combustor through its influence particularly on flame structure and flame position. Other operational considerations such as the effect of elevated pressure and piloting on combustion dynamics as well as recent developments in micromix burner technology for 100% hydrogen combustion have also been discussed. The insights provided in this review will aid the development of instability mitigation strategies for high hydrogen combustion

    Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers

    Get PDF
    Great prominence is put on the design of aeronautical gas turbines due to increasingly stringent regulations and the need to tackle rising fuel prices. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. Since one of the most limiting factors in performing Large Eddy Simulation (LES) of real combustors is estimating the adequate grid, the effects of mesh resolution are investigated by computing full annular LES of a realistic helicopter combustion chamber on three grids, respectively made of 38, 93 and 336 million elements. Results are compared in terms of mean and fluctuating fields. LES captures self-established azimuthal modes. The presence and structure of the modes is discussed. This study therefore highlights the potential of LES for studying combustion instabilities in annular gas turbine combustors

    Application of a three-step approach for prediction of combustion instabilities in industrial gas turbine burners

    Get PDF
    Abstract Recently, because of environmental regulations, gas turbine manufacturers are restricted to produce machines that work in the lean combustion regime. Gas turbines operating in this regime are prone to combustion-driven acoustic oscillations referred as combustion instabilities. These oscillations could have such high amplitude that they can damage gas turbine hardware. In this study, the three-step approach for combustion instabilities prediction is applied to an industrial test rig. As the first step, the flame transfer function (FTF) of the burner is obtained performing unsteady computational fluid dynamics (CFD) simulations. As the second step, the obtained FTF is approximated with an analytical time-lag-distributed model. The third step is the time-domain simulations using a network model. The obtained results are compared against the experimental data. The obtained results show a good agreement with the experimental ones and the developed approach is able to predict thermoacoustic instabilities in gas turbines combustion chambers

    LES evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber

    Get PDF
    Large Eddy Simulations (LES) of a lean swirl-stabilized gas turbine burner are used to analyze mechanisms triggering combustion instabilities. To separately study the effect of velocity and equivalence ratio fluctuations, two LES of the same geometry are performed: one where the burner operates in a “technically” premixed mode (methane is injected by holes in the vanes located in the diagonal passage upstream of the chamber) and the second one where the flow is fully premixed in the diagonal passage. The inlet is acoustically modulated and the mechanisms affecting the dynamic flame response are identified. LES reveals that both cases provide similar averaged (non-)pulsated flame shapes. However, even though the mean flames are only slightly modified, the delays change when mixing is not perfect. LES fields and a simple model for the methane jets trajectories show that mixing in the diagonal passage is not sufficient to damp heterogeneities induced by unsteady fuel flow rate and varying fuel jet trajectories. These mixing fluctuations are phased with velocity oscillations and modify the flame response to forcing. Local fields of delays and interaction indices are obtained, showing that the flame is not compact and is affected by fluctuations of mixing

    Excitation of the precessing vortex core by active flow control to suppress thermoacoustic instabilities in swirl flames

    Get PDF
    In this study, we apply periodic flow excitation of the precessing vortex core at the centerbody of a swirl-stabilized combustor to investigate the impact of the precessing vortex core on flame shape, flame dynamics, and especially thermoacoustic instabilities. The current control scheme is based on results from linear stability theory that determine the precessing vortex core as a global hydrodynamic instability with its maximum receptivity to open-loop actuation located near the center of the combustor inlet. The control concept is first validated at isothermal conditions. This is of utmost importance for the proceeding studies that focus on the exclusive impact of the precessing vortex core on the combustion dynamics. Subsequently, the control is applied to reacting conditions considering lean premixed turbulent swirl flames. Considering thermoacoustically stable flames first, it is shown that the actuation locks onto the precessing vortex core when it is naturally present in the flame, which allows the precessing vortex core frequency to be controlled. Moreover, the control allows the precessing vortex core to be excited in conditions where it is naturally suppressed by the flame, which yields a very effective possibility to control the precessing vortex core amplitude. The control is then applied to thermoacoustically unstable conditions. Considering perfectly premixed flames first, it is shown that the precessing vortex core actuation has only a minor effect on the thermoacoustic oscillation amplitude. However, we observe a continuous increase of the thermoacoustic frequency with increasing precessing vortex core amplitude due to an upstream displacement of the mean flame and resulting reduction of the convective time delay. Considering partially premixed flames, the precessing vortex core actuation shows a dramatic reduction of the thermoacoustic oscillation amplitude. In consideration of the perfectly premixed cases, we suspect that this is caused by the precessing vortex core-enhanced mixing of equivalence ratio fluctuations at the flame root and due to a reduction of time delays due to mean flame displacement.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    A combined oscillation cycle involving self-excited thermo-acoustic and hydrodynamic instability mechanisms

    Get PDF
    The paper examines the combined effects of several interacting thermo-acoustic and hydrodynamic instability mechanisms that are known to influence self-excited combustion instabilities often encountered in the late design stages of modern low-emission gas turbine combustors. A compressible large eddy simulation approach is presented, comprising the flame burning regime independent, modeled probability density function evolution equation/stochastic fields solution method. The approach is subsequently applied to the PRECCINSTA (PREDiction and Control of Combustion INSTAbilities) model combustor and successfully captures a fully self-excited limit-cycle oscillation without external forcing. The predicted frequency and amplitude of the dominant thermo-acoustic mode and its first harmonic are shown to be in excellent agreement with available experimental data. Analysis of the phase-resolved and phase- averaged fields leads to a detailed description of the superimposed mass flow rate and equivalence ratio fluctuations underlying the governing feedback loop. The prevailing thermo-acoustic cycle features regular flame liftoff and flashback events in combination with a flame angle oscillation, as well as multiple hydrodynamic phenomena, i.e., toroidal vortex shedding and a precessing vortex core. The periodic excitation and suppression of these hydrodynamic phenomena is confirmed via spectral proper orthogonal decomposition and found to be controlled by an oscillation of the instantaneous swirl number. Their local impact on the heat release rate, which is predominantly modulated by flame-vortex roll- up and enhanced mixing of fuel and oxidizer, is further described and investigated. Finally, the temporal relationship between the flame “surface area,” flame-averaged mixture fraction, and global heat release rate is shown to be directly correlated

    LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor

    Get PDF
    Numerical simulations were performed using Large Eddy Simulation (LES) and acoustic analysis tools to study thermo-acoustic instabilities in an academic burner. The configuration studied corresponds to a methane/air burner installed at the University of Twente (The Netherlands). It operates under fuel-lean partially premixed conditions at atmospheric pressure, and was built to study thermo-acoustic instabilities in conditions representative of gas turbine Lean Premixed systems: gaseous fuel is injected upstream of the combustor and has a limited time to mix with air. Even though the objective is to burn in a premixed mode, the actual regime corresponds to a partially premixed flame where strong equivalence ratio variations are created especially during combustion instabilities. Capturing these modes with LES is a challenge: here, simulations for both stable and unstable regimes are performed. In the unstable case, the limit cycle oscillations (LCO) are characterized and compared to experimental results. Reasonable agreement is found between simulations and experiments
    corecore