1,162 research outputs found

    An Unsupervised Deep Learning Approach for Scenario Forecasts

    Full text link
    In this paper, we propose a novel scenario forecasts approach which can be applied to a broad range of power system operations (e.g., wind, solar, load) over various forecasts horizons and prediction intervals. This approach is model-free and data-driven, producing a set of scenarios that represent possible future behaviors based only on historical observations and point forecasts. It first applies a newly-developed unsupervised deep learning framework, the generative adversarial networks, to learn the intrinsic patterns in historical renewable generation data. Then by solving an optimization problem, we are able to quickly generate large number of realistic future scenarios. The proposed method has been applied to a wind power generation and forecasting dataset from national renewable energy laboratory. Simulation results indicate our method is able to generate scenarios that capture spatial and temporal correlations. Our code and simulation datasets are freely available online.Comment: Accepted to Power Systems Computation Conference 2018 Code available at https://github.com/chennnnnyize/Scenario-Forecasts-GA

    A Review on Application of Artificial Intelligence Techniques in Microgrids

    Get PDF
    A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources (RERs), sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This paper presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore