7,147 research outputs found

    A deep reinforcement learning based homeostatic system for unmanned position control

    Get PDF
    Deep Reinforcement Learning (DRL) has been proven to be capable of designing an optimal control theory by minimising the error in dynamic systems. However, in many of the real-world operations, the exact behaviour of the environment is unknown. In such environments, random changes cause the system to reach different states for the same action. Hence, application of DRL for unpredictable environments is difficult as the states of the world cannot be known for non-stationary transition and reward functions. In this paper, a mechanism to encapsulate the randomness of the environment is suggested using a novel bio-inspired homeostatic approach based on a hybrid of Receptor Density Algorithm (an artificial immune system based anomaly detection application) and a Plastic Spiking Neuronal model. DRL is then introduced to run in conjunction with the above hybrid model. The system is tested on a vehicle to autonomously re-position in an unpredictable environment. Our results show that the DRL based process control raised the accuracy of the hybrid model by 32%.N/

    Auto-tuning Distributed Stream Processing Systems using Reinforcement Learning

    Get PDF
    Fine tuning distributed systems is considered to be a craftsmanship, relying on intuition and experience. This becomes even more challenging when the systems need to react in near real time, as streaming engines have to do to maintain pre-agreed service quality metrics. In this article, we present an automated approach that builds on a combination of supervised and reinforcement learning methods to recommend the most appropriate lever configurations based on previous load. With this, streaming engines can be automatically tuned without requiring a human to determine the right way and proper time to deploy them. This opens the door to new configurations that are not being applied today since the complexity of managing these systems has surpassed the abilities of human experts. We show how reinforcement learning systems can find substantially better configurations in less time than their human counterparts and adapt to changing workloads

    Characterising the Robustness of Reinforcement Learning for Continuous Control using Disturbance Injection

    Full text link
    In this study, we leverage the deliberate and systematic fault-injection capabilities of an open-source benchmark suite to perform a series of experiments on state-of-the-art deep and robust reinforcement learning algorithms. We aim to benchmark robustness in the context of continuous action spaces -- crucial for deployment in robot control. We find that robustness is more prominent for action disturbances than it is for disturbances to observations and dynamics. We also observe that state-of-the-art approaches that are not explicitly designed to improve robustness perform at a level comparable to that achieved by those that are. Our study and results are intended to provide insight into the current state of safe and robust reinforcement learning and a foundation for the advancement of the field, in particular, for deployment in robotic systems.Comment: 18 pages, 15 figure
    • …
    corecore