3 research outputs found

    Soil moisture retrieval over agricultural fields from L-band multi-incidence and multitemporal PolSAR observations using polarimetric decomposition techniques

    Get PDF
    Surface soil moisture (SM) retrieval over agricultural areas from polarimetric synthetic aperture radar (PolSAR) has long been restricted by vegetation attenuation, simplified polarimetric scattering modelling, and limited SAR measurements. This study proposes a modified polarimetric decomposition framework to retrieve SM from multi-incidence and multitemporal PolSAR observations. The framework is constructed by combining the X-Bragg model, the extended double Fresnel scattering model and the generalised volume scattering model (GVSM). Compared with traditional decomposition models, the proposed framework considers the depolarisation of dihedral scattering and the diverse vegetation contribution. Under the assumption that SM is invariant for the PolSAR observations at two different incidence angles and that vegetation scattering does not change between two consecutive measurements, analytical parameter solutions, including the dielectric constant of soil and crop stem, can be obtained by solving multivariable nonlinear equations. The proposed framework is applied to the time series of L-band uninhabited aerial vehicle synthetic aperture radar data acquired during the Soil Moisture Active Passive Validation Experiment in 2012. In this study, we assess retrieval performance by comparing the inversion results with in-situ measurements over bean, canola, corn, soybean, wheat and winter wheat areas and comparing the different performance of SM retrieval between the GVSM and Yamaguchi volume scattering models. Given that SM estimation is inherently influenced by crop phenology and empirical parameters which are introduced in the scattering models, we also investigate the influence of surface depolarisation angle and co-pol phase difference on SM estimation. Results show that the proposed retrieval framework provides an inversion accuracy of RMSE<6.0% and a correlation of R≥0.6 with an inversion rate larger than 90%. Over wheat and winter wheat fields, a correlation of 0.8 between SM estimates and measurements is observed when the surface scattering is dominant. Specifically, stem permittivity, which is retrieved synchronously with SM also shows a linear relationship with crop biomass and plant water content over bean, corn, soybean and wheat fields. We also find that a priori knowledge of surface depolarisation angle, co-pol phase difference and adaptive volume scattering could help to improve the performance of the proposed SM retrieval framework. However, the GVSM model is still not fully adaptive because the co-pol power ratio of volume scattering is potentially influenced by ground scattering.This work was supported by the National Natural Science Foundation of China [grant numbers 61971318, 41771377, 41901286, 42071295, 41901284, U2033216]; the China Postdoctoral Science Foundation [grant number 2018M642914]. This work was supported in part by the Spanish Ministry of Science and Innovation, the State Agency of Research (AEI), and the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P

    Model-Based Six-Component Scattering Matrix Power Decomposition

    No full text
    Fully polarimetric model-based decompositions are developed by accounting for the physical scattering model and experimental polarimetric SAR data acquisition processes. These decompositions offer the promising straightforward interpretation and highly improved inversion models for visualizing images of scattering scenarios optimally. However, the attempts in existing decompositions to implement the split real and imaginary components of the T-13 element of the coherency matrix have been hampered by the absence of physical models to fit the coherency matrix. In this paper, two additional physical scattering submodels are derived. The real and imaginary parts of T-13 are accounted for by implementing two newly developed physical scattering models. (One is for oriented dipole scattering and the other is for oriented quarter-wave reflection.) Furthermore, this paper is extended by implementing these physical models into a six-component scattering power model-based decomposition. To this date, the developed novel decompositions account for the maximum elements of the coherency matrix in a physical manner compared to the existing model-based decompositions. The proposed novel decomposition is tested on L-band and X-band fully polarimetric SAR data sets of the Advanced Land Observing Satellite-2/Phased Array L-band Synthetic Aperture Radar-2 and the X-band TerraSAR-X, respectively. This new decomposition produces additional two scattering submatrix components. Such scattering components are prevalent in vegetation and urban areas and even dominant over highly oriented urban scenarios. The new method enhances the truly existing double-bounce scattering contributions and reduces the overrated volume scattering from double-bounce scatterers. By comparing the results, it is found that the proposed decomposition considerably enhances the SAR image quality and its more correct visualizing presentation compared to existing decompositions. It is also found to be more robust over the oriented urban areas than the existing decompositions, resulting from the utilization of both the real and imaginary components of T-13 polarimetric information in a physical scattering manner

    Model-Based Six-Component Scattering Matrix Power Decomposition

    No full text
    corecore