32,282 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Fault Injection for Embedded Microprocessor-based Systems

    Get PDF
    Microprocessor-based embedded systems are increasingly used to control safety-critical systems (e.g., air and railway traffic control, nuclear plant control, aircraft and car control). In this case, fault tolerance mechanisms are introduced at the hardware and software level. Debugging and verifying the correct design and implementation of these mechanisms ask for effective environments, and Fault Injection represents a viable solution for their implementation. In this paper we present a Fault Injection environment, named FlexFI, suitable to assess the correctness of the design and implementation of the hardware and software mechanisms existing in embedded microprocessor-based systems, and to compute the fault coverage they provide. The paper describes and analyzes different solutions for implementing the most critical modules, which differ in terms of cost, speed, and intrusiveness in the original system behavio

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    The Art of Fault Injection

    Get PDF
    Classical greek philosopher considered the foremost virtues to be temperance, justice, courage, and prudence. In this paper we relate these cardinal virtues to the correct methodological approaches that researchers should follow when setting up a fault injection experiment. With this work we try to understand where the "straightforward pathway" lies, in order to highlight those common methodological errors that deeply influence the coherency and the meaningfulness of fault injection experiments. Fault injection is like an art, where the success of the experiments depends on a very delicate balance between modeling, creativity, statistics, and patience

    Combined Time and Information Redundancy for SEU-Tolerance in Energy-Efficient Real-Time Systems

    No full text
    Recently the trade-off between energy consumption and fault-tolerance in real-time systems has been highlighted. These works have focused on dynamic voltage scaling (DVS) to reduce dynamic energy dissipation and on time redundancy to achieve transient-fault tolerance. While the time redundancy technique exploits the available slack time to increase the fault-tolerance by performing recovery executions, DVS exploits slack time to save energy. Therefore we believe there is a resource conflict between the time-redundancy technique and DVS. The first aim of this paper is to propose the usage of information redundancy to solve this problem. We demonstrate through analytical and experimental studies that it is possible to achieve both higher transient fault-tolerance (tolerance to single event upsets (SEU)) and less energy using a combination of information and time redundancy when compared with using time redundancy alone. The second aim of this paper is to analyze the interplay of transient-fault tolerance (SEU-tolerance) and adaptive body biasing (ABB) used to reduce static leakage energy, which has not been addressed in previous studies. We show that the same technique (i.e. the combination of time and information redundancy) is applicable to ABB-enabled systems and provides more advantages than time redundancy alone
    • …
    corecore