16 research outputs found

    MEMS micromirrors for imaging applications

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T13478Optical MEMS (microelectromechanical systems) are widely used in various applications. In this thesis, the design, simulation and characterisation of two optical MEMS devices for imaging applications, a varifocal micromirror and a 2D scanning micromirror, are introduced. Both devices have been fabricated using the commercial Silicon-on-Insulator multi-users MEMS processes (SOIMUMPs), in the 10 m thick Silicon-on-Insulator (SOI) wafer. Optical MEMS device with variable focal length is a critical component for imaging system miniaturisation. In this thesis, a thermally-actuated varifocal micromirror (VFM) with 1-mm-diameter aperture is introduced. The electrothermal actuation through Joule heating of the micromirror suspensions and the optothermal actuation using incident laser power absorption have been demonstrated as well as finite element method (FEM) simulation comparisons. Especially, the optical aberrations produced by this VFM have been statistically quantified to be negligible throughout the actuation range. A compact imaging system incorporating this VFM has been demonstrated with high quality imaging results. MEMS 2D scanners, or scanning micromirrors, are another type of optical MEMS which have been widely investigated for applications such as biomedical microscope imaging, projection, retinal display and optical switches for telecommunication network, etc. For large and fast scanning motions, the actuation scheme to scan a micromirror in two axes, the structural connections and arrangement are fundamental. The microscanner introduced utilises two types of actuators, electrothermal actuators and electrostatic comb-drives, to scan a 1.2-mm-diameter gold coated silicon micromirror in two orthogonal axes. With assistance of FEM software, CoventorWare, the structure optimisation of actuators and flexure connections are presented. The maximum optical scan angles in two axes by each type of actuator individually and by actuating the two at the same time have been characterised experimentally. By programming actuation signals, the microscanner has achieved a rectangular scan pattern with 7° 10° angular-scan-field at a line-scan rate of around 1656 Hz.Optical MEMS (microelectromechanical systems) are widely used in various applications. In this thesis, the design, simulation and characterisation of two optical MEMS devices for imaging applications, a varifocal micromirror and a 2D scanning micromirror, are introduced. Both devices have been fabricated using the commercial Silicon-on-Insulator multi-users MEMS processes (SOIMUMPs), in the 10 m thick Silicon-on-Insulator (SOI) wafer. Optical MEMS device with variable focal length is a critical component for imaging system miniaturisation. In this thesis, a thermally-actuated varifocal micromirror (VFM) with 1-mm-diameter aperture is introduced. The electrothermal actuation through Joule heating of the micromirror suspensions and the optothermal actuation using incident laser power absorption have been demonstrated as well as finite element method (FEM) simulation comparisons. Especially, the optical aberrations produced by this VFM have been statistically quantified to be negligible throughout the actuation range. A compact imaging system incorporating this VFM has been demonstrated with high quality imaging results. MEMS 2D scanners, or scanning micromirrors, are another type of optical MEMS which have been widely investigated for applications such as biomedical microscope imaging, projection, retinal display and optical switches for telecommunication network, etc. For large and fast scanning motions, the actuation scheme to scan a micromirror in two axes, the structural connections and arrangement are fundamental. The microscanner introduced utilises two types of actuators, electrothermal actuators and electrostatic comb-drives, to scan a 1.2-mm-diameter gold coated silicon micromirror in two orthogonal axes. With assistance of FEM software, CoventorWare, the structure optimisation of actuators and flexure connections are presented. The maximum optical scan angles in two axes by each type of actuator individually and by actuating the two at the same time have been characterised experimentally. By programming actuation signals, the microscanner has achieved a rectangular scan pattern with 7° 10° angular-scan-field at a line-scan rate of around 1656 Hz

    Statics and dynamics of electrothermal micromirrors

    Full text link
    Adaptive and smart systems are growing in popularity as we shift toward personalization as a culture. With progressive demands on energy efficiency, it is increasingly important to focus on the utilization of energy in a novel way. This thesis investigates a microelectromechanical system (MEMS) mirror with the express intent to provide flexibility in solid state lighting (SSL). By coupling the micromirror to an optical source, the reflected light may be reshaped and directed so as to optimize the overall illumination profile. In addition, the light may be redirected in order to provide improved signal strength in visible light communications (VLC) with negligible impact on energy demands. With flexibility and full analog control in mind, the design of a fully integrated tip-tilt-piston micromirror with an additional variable focus degree of freedom is outlined. Electrothermal actuators are used to both steer the light and tune the focal length. A detailed discussion of the underlying physics behind composite beams and thermal actuators is addressed. This leads directly into an overview of the two main mirror components, namely the segmented mirror and the deflection actuators. An in-depth characterization of the dynamics of the mirror is discussed including the linearity of the thermal response. Frequency domain analysis of such a system provides insight into tunable mechanical properties such as the resonant frequency and quality factor. The degenerate resonant modes can be separated significantly. It is shown that the frequency response may be tuned by straining specific actuators and that it follows a predictable pattern. As a result, the system can be scanned at increasingly large angles. In other words, coupled mechanical modes allow variable damping and amplification. A means to determine the level of coupling is examined and the mode shape variations are tracked as a function of the tuning parameters. Finally, the applications of such a device are explored and tested. Such applications include reliable signal-to-noise ratio (SNR) enhancements in VLC of 30 dB and color tunable steerable lights using laser diodes. A brief discussion of the implications of dynamic illumination and tunable systems is juxtaposed with an explanation behind the integration of an electrothermal micromirror and an all digital driver

    Optical MEMS

    Get PDF
    Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense

    Dynamical control of one- and two-dimensional optical fibre scanning

    Get PDF
    This thesis investigates the dynamical control of one- and two-dimensional optical fibre scanning. One dimensional scanning is performed with a mechanically biaxial polarisation-preserving fibre mounted on a piezoelectric transducer with one of its principal mechanical axes aligned parallel to the excitation direction. The addition of an apertured reflector in front of the imaging lens allows a position sensing mechanism based on intermittent optical feedback to be integrated into the scanner. Over-scanning the lens generates timing pulses interlaced with back-scattered signals from the target. The timing information can be used for closed loop control of the phase and amplitude of vibration. Suitable control algorithms are developed and their convergence and stability is studied. This thesis also investigates the construction of fibres with enhanced mechanically asymmetry and their dynamical properties during two-dimensional imaging based on Lissajous scan patterns. Dip-coating is proposed as a method of forming two-cored waveguide cantilevers from two separate, parallel fibres that are encapsulated in a plastic coating. The frequency ratio between the two orthogonal bending mode resonances can be controlled with number of coatings. An exact image reconstruction algorithm based on Lissajous scanning is proposed. Latency, transient response and steady-state phase errors are all shown to cause dramatic deterioration of the reconstructed image. Solutions are provided by ensuring the correct starting time for data acquisition and introducing a drive phase correction to one of the axes. Two methods of resolution enhancement are demonstrated. The first is based on combining data sets obtained during separate scans carried out with deliberately applied phase offsets. The second operates by combining data sets from separate imaging operations carried out using the two different fibre cores. Finally, this thesis demonstrates potential applications in optogenetics by combining the two operations of imaging and writing, using different light sources that may also have different wavelengths.Open Acces

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Cantilever beam microactuators with electrothermal and electrostatic drive

    Get PDF
    Microfabrication provides a powerful tool for batch processing and miniaturization of mechanical systems into dimensional domain not accessible easily by conventional machining. CMOS IC process compatible design is definitely a big plus because of tremendous know-how in IC technologies, commercially available standard IC processes for a reasonable price, and future integration of microma-chined mechanical systems and integrated circuits. Magnetically, electrostatically and thermally driven microactuators have been reported previously. These actuators have applications in many fields from optics to robotics and biomedical engineering. At NJIT cleanroom, mono or multimorph microactuators have been fabricated using CMOS compatible process. In design and fabrication of these microactuators, internal stress due to thermal expansion coefficient mismatch and residual stress have been considered, and the microactuators are driven with electro-thermal power combined with electrostatical excitation. They can provide large force, and in- or out-of-plane actuation. In this work, an analytical model is proposed to describe the thermal actuation of in-plane (inchworm) actuators. Stress gradient throughout the thickness of monomorph layers is modeled as linearly temperature dependent Δσ. The nonlinear behaviour of out-of-plane actuators under electrothermal and electrostatic excitations is investigated. The analytical results are compared with the numerical results based on Finite Element Analysis. ANSYS, a general purpose FEM package, and IntelliCAD, a FEA CAD tool specifically designed for MEMS have been used extensively. The experimental results accompany each analytical and numerical work. Micromechanical world is three dimensional and 2D world of IC processes sets a limit to it. A new micromachining technology, reshaping, has been introduced to realize 3D structures and actuators. This new 3D fabrication technology makes use of the advantages of IC fabrication technologies and combines them with the third dimension of the mechanical world. Polycrystalline silicon microactuators have been reshaped by Joule heating. The first systematic investigation of reshaping has been presented. A micromirror utilizing two reshaped actuators have been designed, fabricated and characterized

    MEMS devices for the control of trapped atomic particles

    Get PDF
    This thesis presents the design and characterisation of novel MEMS scanners, for use in systems involving trapped atomic particles. The scanners are manufactured using multiuser silicon-on-insulator MEMS fabrication processes and use resonant piezoelectric actuation based on aluminium nitride thin films to produce one dimensional scanning at high frequencies, with resonance tuning capabilities of up to 5 kHz. Frequencies of ~100kHz and higher are required to enable for example resonant addressing of trapped atomic particles. This work demonstrates how the 200 μm and 400 μm diameter scanners can produce optical deflection angles upwards of 2° at frequencies from 80 kHz to 400 kHz. It proposes an addressing scheme based on Lissajous scanning to steer laser pulses onto 2D grids at a scale compatible with experiments involving single trapped atoms. It also examines frequency tuning capabilities of the scanners using localized on-chip Joule heating and active cooling ; frequency tuning and synchronization are shown to be critical to the implementation of 2-dimensional scanning with multiple scanners. These features are then demonstrated in a prototype implementation using fluorescing samples as a mock target to evaluate the optical performance of the scanning system. Finally, the thesis describes a proof-of-concept for integration of the scanners in a trapped atoms experiment, in which rubidium atoms trapped inside a magneto-optical trap are selectively pumped into a fluorescing state using a beam steered by the MEMS scanners.This thesis presents the design and characterisation of novel MEMS scanners, for use in systems involving trapped atomic particles. The scanners are manufactured using multiuser silicon-on-insulator MEMS fabrication processes and use resonant piezoelectric actuation based on aluminium nitride thin films to produce one dimensional scanning at high frequencies, with resonance tuning capabilities of up to 5 kHz. Frequencies of ~100kHz and higher are required to enable for example resonant addressing of trapped atomic particles. This work demonstrates how the 200 μm and 400 μm diameter scanners can produce optical deflection angles upwards of 2° at frequencies from 80 kHz to 400 kHz. It proposes an addressing scheme based on Lissajous scanning to steer laser pulses onto 2D grids at a scale compatible with experiments involving single trapped atoms. It also examines frequency tuning capabilities of the scanners using localized on-chip Joule heating and active cooling ; frequency tuning and synchronization are shown to be critical to the implementation of 2-dimensional scanning with multiple scanners. These features are then demonstrated in a prototype implementation using fluorescing samples as a mock target to evaluate the optical performance of the scanning system. Finally, the thesis describes a proof-of-concept for integration of the scanners in a trapped atoms experiment, in which rubidium atoms trapped inside a magneto-optical trap are selectively pumped into a fluorescing state using a beam steered by the MEMS scanners

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    New Platform Designs for Enabling Atomic Interactions in Solid and Gaseous States

    Get PDF
    This dissertation is composed of two projects that explored two new platforms for measuring atomic interactions using simpler designs than in the literature. The first project of this dissertation designed a platform that enables the measurement of Lennard-Jones interaction between two solid surfaces in the form of Atomic Force Microscope (AFM) probe, using different techniques from Micro electrical Mechanical Systems (MEMS). MEMS by definition implies a mechanical and electrical parts of a system. There are many defects and imperfections that emerges on both sides of the system. On the mechanical side, one of the most common imperfections is residual stress, where most fabrication recipes are designed to eliminate it. Residual stress on films causes curvature (manifested as buckling, bending, etc.) for structures that are meant to be straight. On the electrical side, fringing field is considered very complicated to model, and too small to experimentally detect and separate from the main direct electrostatic field; hence, mostly it gets ignored in modelling. This project will try to make a benefit of these two unwanted phenomena combined (residual stress and fringing field) to make a new design for an Atomic Force Microscope (AFM) probe (tip). The tip behavior is first analyzed and modeled statically using COMSOL software, then dynamically using Mathematica software. Both models were combined and compared with the experimental results obtained by an optical profilometer, scanning electron microscope, and a vibrometer. It was found that the model gave good predictions of the experimental behaviors, except with higher displacement amplitude of the model than that of experiment. The reason is due to the purposeful curvature of the probe (cantilever) induced by residual stress, which caused some parts of the probe not to be on the same level with the electrode; hence, weakened its actual response experimentally. Since use of correction factors to account for fringing field is nothing new, a correction reduction factor was introduced to lower the model response to match that of the experiment. The results show that the structure of the actuator (parallel plate or a single comb finger) is not of importance in modeling fringing field, as we have applied literature force modeled for non-curved parallel plate capacitors for our curved comb-finger structure and got identical response to our comb-finger derived new force with a matter of just a correction factor (i.e. free parameter). We have also shown that the curvature equation is unnecessary in the model, and the behavior of the curved probe can be modeled as a straight one. The second project of this dissertation is another simple design for enhancing light-matter interaction between a single laser beam and an atomic gas (cesium) in what is known as cavity Quantum Electrodynamics (QED). Increasing the interaction between light and matter is inspired by the desire to unravel more understanding about the nature of both interacting entities: light and matter. This can be enabled by engineering necessary platforms where such maximally interacting light and matter can be realized. Usually there are two ways to increase such interaction: 1) increase transverse confinement, and 2) increase the interaction time (in addition to increasing the number of atoms). Each of these two ways is done in a separate platform design. This second project proposes a new platform that can have both ways: increasing both transverse confinement and interaction time by using the hollow core of photonic crystal fiber as the interaction host (hence blocking light from propagating transversally by the photonic bandgap effect), while the light will be bounced back and forth against the atomic gas, not by the conventional Fabry-Perot cavity, but instead by inscribing a Bragg grating mirror on the walls of the hollow core (hence, increase interaction time). The unblocked hollow core will allow easier atomic gas insertion. Different mirror inscription methods were studied, and the best method was employed using a photoresist-assisted layer, instead of direction inscription on the core silicon wall. Initial numerical modeling was done using Lumerical software that gave the Bragg parameters corresponding to the best Bragg mirror reflection which was up to 99.99% reflectivity from only about 300 Bragg periods (shorter mirror) corresponding to only ~100 µm penetration depth. Moreover, since the hollow core photonic crystal fiber is of a high cost, an injection port was designed and built to enable low fiber material loss caused by conventional injection

    Transient absorption imaging of hemeprotein in fresh muscle fibers

    Get PDF
    2022 Summer.Includes bibliographical references.Mitochondrial diseases affect 1 in 4000 individuals in the U.S. among adults and children of all races and genders. Nevertheless, these diseases are hard to diagnose because they affect each person differently. Meanwhile the gold standard diagnosis methods are usually invasive and time- consuming. Therefore, a non-invasive and in-vivo diagnosis method is highly demanded in this area. Our goal is to develop a non-invasive diagnosis method based on the endogenous nonlinear optical effect of the live tissues. Mitochondrial disease is frequently the result of a defective electron transport chain (ETC). Our goal is to develop a non-invasive way to measure redox within the ETC, specifically, of cytochromes. Cytochromes are iron porphyrins that are essential to the ETC. Their redox states can indicate cellular oxygen consumption and mitochondrial ATP production. So being able to differentiate the redox states of cytochromes will offer us a method to characterize mitochondrial function. Meanwhile, Chergui's group found out that the two redox states of cytochrome c have different pump-probe spectroscopic responses, meaning that the transient absorption (TA) decay lifetime can be a potential molecular contrast for cytochrome redox state discrimination. Their research leads us to utilize the pump-probe spectroscopic idea to develop a time-resolved optical microscopic method to differentiate not only cytochromes from other chemical compounds but also reduced cytochromes from oxidized ones. This dissertation describes groundbreaking experiments where transient absorption is used to reveal excited-state lifetime differences between healthy controls and an animal model of mitochondrial disease, in addition to differences between reduced and oxidized ETC in isolated mitochondria and fresh preparations of muscle fibers. For our initial experiments, we built a pump-probe microscopic system with a fiber laser source, producing 530nm pump and 490nm probe using a 3.5kHz laser scanning rate. The pulse durations of pump and probe are both 800fs. For the preliminary results, we have successfully achieved TA decay contrast between reduced and oxidized cytochromes in solution form. Then we have achieved SNR enhanced pump-probe image of BGO crystal particles with the help of the software- based adaptive filter noise canceling method. We also have installed a FPGA-based adaptive filter to enhance the pump-probe signals of the electrophoresis gels that contain different mitochondrial respiratory chain supercomplexes. However, because the noise floor was still 30 dB higher than shot noise limit, cytochrome imaging in live tissues was still problematic. We then built another pump-probe microscope with a solid- state ultrafast laser source. In that way, we do not need to worry about laser relative intensity noise (RIN) anymore, since the noise floor of the solid-state laser source can reach the shot noise limit at MHz region. One other advantage of the new laser source is that it can provide one tunable laser output that can be directly converted to the probe pulse with tunable center wavelength. Its tunability can cover the entire visible spectrum. We realized a pump-probe microscopy with a 520nm pump pulse and a tunable probe pulse. The tunability on the probe arm allows us to explore better pump-probe contrast between two redox states. What's more, I will introduce my preliminary results of utilizing supercontinuum generation in a photonic crystal fiber (PCF) to realize tunability on pump wavelength. In that way, more possibilities will be unlocked. And the hyperspectral pump-probe microscope will be able to distinguish more molecules
    corecore