349,405 research outputs found

    Universal Statistical Behavior of Neural Spike Trains

    Get PDF
    We construct a model that predicts the statistical properties of spike trains generated by a sensory neuron. The model describes the combined effects of the neuron's intrinsic properties, the noise in the surrounding, and the external driving stimulus. We show that the spike trains exhibit universal statistical behavior over short times, modulated by a strongly stimulus-dependent behavior over long times. These predictions are confirmed in experiments on H1, a motion-sensitive neuron in the fly visual system.Comment: 7 pages, 4 figure

    Microscopic approach of a time elapsed neural model

    Get PDF
    The spike trains are the main components of the information processing in the brain. To model spike trains several point processes have been investigated in the literature. And more macroscopic approaches have also been studied, using partial differential equation models. The main aim of the present article is to build a bridge between several point processes models (Poisson, Wold, Hawkes) that have been proved to statistically fit real spike trains data and age-structured partial differential equations as introduced by Pakdaman, Perthame and Salort

    Spike trains statistics in Integrate and Fire Models: exact results

    Get PDF
    We briefly review and highlight the consequences of rigorous and exact results obtained in \cite{cessac:10}, characterizing the statistics of spike trains in a network of leaky Integrate-and-Fire neurons, where time is discrete and where neurons are subject to noise, without restriction on the synaptic weights connectivity. The main result is that spike trains statistics are characterized by a Gibbs distribution, whose potential is explicitly computable. This establishes, on one hand, a rigorous ground for the current investigations attempting to characterize real spike trains data with Gibbs distributions, such as the Ising-like distribution, using the maximal entropy principle. However, it transpires from the present analysis that the Ising model might be a rather weak approximation. Indeed, the Gibbs potential (the formal "Hamiltonian") is the log of the so-called "conditional intensity" (the probability that a neuron fires given the past of the whole network). But, in the present example, this probability has an infinite memory, and the corresponding process is non-Markovian (resp. the Gibbs potential has infinite range). Moreover, causality implies that the conditional intensity does not depend on the state of the neurons at the \textit{same time}, ruling out the Ising model as a candidate for an exact characterization of spike trains statistics. However, Markovian approximations can be proposed whose degree of approximation can be rigorously controlled. In this setting, Ising model appears as the "next step" after the Bernoulli model (independent neurons) since it introduces spatial pairwise correlations, but not time correlations. The range of validity of this approximation is discussed together with possible approaches allowing to introduce time correlations, with algorithmic extensions.Comment: 6 pages, submitted to conference NeuroComp2010 http://2010.neurocomp.fr/; Bruno Cessac http://www-sop.inria.fr/neuromathcomp

    Modelling single line train operations

    Get PDF
    Scheduling of trains on a single line involves using train priorities for the resolution of conflicts. The mathematical programming model described in the first part of this paper schedules trains over a single line track when the priority of each train in a conflict depends on an estimate of the remaining crossing and overtaking delay. This priority is used in a branch and bound procedure to allow the determination of optimal solutions quickly. This is demonstrated with the use of an example. Rail operations over a single line track require the existence of a set of sidings at which trains can cross and/ or overtake each other. Investment decisions on upgrading the number and location of these sidings can have a significant impact on both customer service and rail profitability. Sidings located at insufficient positions may lead to high operating costs and congestion. The second part of this paper puts forward a model to determine the optimal position of a set of sidings on a single track rail corridor. The sidings are positioned to minimise the total delay and train operating costs of a given cyclic train schedule. The key feature of the model is the allowance of non-constant train velocities and non-uniform departure times

    A model for the joint evaluation of burstiness and regularity in oscillatory spike trains

    Get PDF
    Poster presentation: Introduction The ability of neurons to emit different firing patterns is considered relevant for neuronal information processing. In dopaminergic neurons, prominent patterns include highly regular pacemakers with separate spikes and stereotyped intervals, processes with repetitive bursts and partial regularity, and irregular spike trains with nonstationary properties. In order to model and quantify these processes and the variability of their patterns with respect to pharmacological and cellular properties, we aim to describe the two dimensions of burstiness and regularity in a single model framework. Methods We present a stochastic spike train model in which the degree of burstiness and the regularity of the oscillation are described independently and with two simple parameters. In this model, a background oscillation with independent and normally distributed intervals gives rise to Poissonian spike packets with a Gaussian firing intensity. The variability of inter-burst intervals and the average number of spikes in each burst indicate regularity and burstiness, respectively. These parameters can be estimated by fitting the model to the autocorrelograms. This allows to assign every spike train a position in the two-dimensional space described by regularity and burstiness and thus, to investigate the dependence of the firing patterns on different experimental conditions. Finally, burst detection in single spike trains is possible within the model because the parameter estimates determine the appropriate bandwidth that should be used for burst identification. Results and Discussion We applied the model to a sample data set obtained from dopaminergic substantia nigra and ventral tegmental area neurons recorded extracellularly in vivo and studied differences between the firing activity of dopaminergic neurons in wildtype and K-ATP channel knock-out mice. The model is able to represent a variety of discharge patterns and to describe changes induced pharmacologically. It provides a simple and objective classification scheme for the observed spike trains into pacemaker, irregular and bursty processes. In addition to the simple classification, changes in the parameters can be studied quantitatively, also including the properties related to bursting behavior. Interestingly, the proposed algorithm for burst detection may be applicable also to spike trains with nonstationary firing rates if the remaining parameters are unaffected. Thus, the proposed model and its burst detection algorithm can be useful for the description and investigation of neuronal firing patterns and their variability with cellular and experimental conditions

    Hump Yard Track Allocation with Temporary Car Storage

    Get PDF
    In rail freight operation, freight cars need to be separated and reformed into new trains at hump yards. The classification procedure is complex and hump yards constitute bottlenecks in the rail freight network, often causing outbound trains to be delayed. One of the problems is that planning for the allocation of tracks at hump yards is difficult, given that the planner has limited resources (tracks, shunting engines, etc.) and needs to foresee the future capacity requirements when planning for the current inbound trains. In this paper, we consider the problem of allocating classification tracks in a rail freight hump yard for arriving and departing trains with predetermined arrival and departure times. The core problem can be formulated as a special list coloring problem. We focus on an extension where individual cars can temporarily be stored on a special subset of the tracks. An extension where individual cars can temporarily be stored on a special subset of the tracks is also considered. We model the problem using mixed integer programming, and also propose several heuristics that can quickly give feasible track allocations. As a case study, we consider a real-world problem instance from the Hallsberg Rangerbangård hump yard in Sweden. Planning over horizons over two to four days, we obtain feasible solutions from both the exact and heuristic approaches that allow all outgoing trains to leave on time
    corecore