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ABSTRACT 

 

 

Scheduling of trains on a single line involves using train priorities for the resolution of 

conflicts. The mathematical programming model described in the first part of this paper 

schedules trains over a single line track when the priority of each train in a conflict 

depends on an estimate of the remaining crossing and overtaking delay. This priority is 

used in a branch and bound procedure to allow the determination of optimal solutions 

quickly. This is demonstrated with the use of an example. Rail operations over a single 

line track require the existence of a set of sidings at which trains can cross and/ or 

overtake each other. Investment decisions on upgrading the number and location of these 

sidings can have a significant impact on both customer service and rail profitability. 

Sidings located at insufficient positions may lead to high operating costs and congestion. 

The second part of this paper puts forward a model to determine the optimal position of a 

set of sidings on a single track rail corridor. The sidings are positioned to minimise the 

total delay and train operating costs of a given cyclic train schedule. The key feature of 

the model is the allowance of non-constant train velocities and non-uniform departure 

times. 

 

 

Key words:  Railroad Scheduling, Siding Location, Optimisation Techniques, Railroad 

Operations 
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INTRODUCTION 

 

This paper deals with two problems of single line train scheduling namely: the on-line 

scheduling of trains over a single line track with multiple sidings; and the optimum 

location of the sidings with respect to a given schedule. Part I deals with the optimum 

dispatching of trains on a single line of track. Trains can be dispatched from either end or 

from intermediate points on the track. When two trains approach each other on a single 

line, one of them must take the siding for the safe operation of the system. Determining 

which train takes the siding is done taking into account such factors as train priority, 

distance, lateness, and train operating costs. It is common practice for train operators to 

set a fixed timetable where conflicts are resolved. A train dispatcher in a control centre 

will act in the event of unforseen events. As these events can cause delays to trains, the 

dispatcher needs to continually alter the given timetable and resolve new conflicts. This 

is usually performed manually under strict time constraints so that the number of 

alternatives which can be assessed is very limited.  

 

The operator' s experience and knowledge of local conditions, will continue to be used. 

Train dispatching decisions, which to a certain extent involve human as well as technical 

factors, will require human intervention to resolve problems. However, with such an 

optimisation model available, the operator is able to quickly update a schedule as 

unplanned events occur. The new optimal schedule offered by the model may not be fully 

implementable for practical reasons. However, the gap between the optimum and the 

practically feasible schedule, can be readily assessed. The penalty for not being able to 

implement the optimum schedule, in terms of operating cost and travel time reliability, 

can be evaluated against the practical factors which prevent implementation of the 

optimum schedule. 
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With the online train scheduling problem, the determination of the priority of a train at a 

particular point on the journey involves the consideration of the initial priority, current 

lateness of the train and a lower bound estimate of possible further conflict delay. 

Exploiting such a lower bound in a model will act as a look ahead function and will allow 

optimum schedules to be located quickly. 

 

A second major use of the model relates to the planning of railroad operations. Such 

planning can be conveniently divided into two components, namely: short to medium 

term train planning; and railroad infrastructure planning associated with train operations. 

The model can be used to evaluate the implications of changes to a timetable in terms 

changed train departures, additional trains, and changes in train speeds. The optimum 

scheduling algorithm can be used as a simulator of proposed changes. Finally, the model 

can be used for long-range planning of railroad operations. In Australia, there are two 

main infrastructure planning issues which are currently under investigation., namely: the 

upgrading of main line track to allow higher speeds and heavier axle loads; and the need 

to extend sidings to allow for longer trains. The scheduling optimisation model can be 

used to evaluate both these investment strategies. The impact on the schedule of 

extending some sidings and not others can be assessed by using the model to simulate the 

effect of the proposed changes on future schedules. The removal of sidings has a cost in 

terms of flexibility and feasibility of schedules. 

 

Part II deals with the development of a model to estimate the optimum position of sidings 

on a single line track. With high capital costs, a rail line must be designed as 

economically as possible, and at the same time have enough capacity to accommodate the 

forecast demand. Planning for a rail line involves determining the number of sidings 

required, the length of each siding, its position and the vertical and horizontal alignments 

for the line.  
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When determining the positions of sidings, several variables must be considered. The 

sidings must be placed in order to minimise train delays and total train operating costs. If 

too many sidings are planned for, the initial capital costs will outweigh the long term 

benefits and there will be wasted capacity. 

 

PART I:   OPTIMUM TRAIN SCHEDULES 

 

Past Research 

 

Research involving the scheduling of trains on a single line track is extensive and the 

following highlights the major developments. 

 

Kraft (1) developed a dispatching rule giving the optimal time advantage for a particular 

train based on train priority, track running times and the delay penalties of each train. A 

similar method discussed by Sauder and Westerman (2) was implemented as a Decision 

Support System in a railway division of the United States. These models, which assume 

fixed train speeds, produce train plans which minimise the weighted total travel times. 

 

Kraay et al (3) are the first to look at the idea of determining the cross-overtake plan and 

velocity profile to pace trains in order to conserve fuel, whilst keeping the lateness of the 

trains at a minimum. Similarly formulated constraints to that of Kraay et al (3) were used 

in a interactive Decision Support System (SCAN) by Jovanovic and Harker (4), to 

develop reliable train schedules using current schedules. Mills, Perkins and Pudney (5) 

formulated a discrete network type model by discretising the departure and arrival time 

variables of this formulation.  
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Model Formulation 

 

Assumptions and Inputs 

 

The following assumptions are made with regard to the model in this section: 

• The track is divided into segments which are separated by sidings. 

• Crossing and overtaking can occur at any siding or double line track segments. 

• Trains can follow each other on a track segment with a minimum headway. 

• For double track sections, it is assumed one lane will be allocated for inbound trains 

and one lane will be allocated for outbound trains. Usually, signal points will be set 

up this way. 

• Scheduled stops are permitted at any intermediate siding for any train 

 

The model will require various information to make use for the input to the model. The 

specific information is as follows: 

• An unresolved train plan to make available the number of overtake and cross 

interferences for each train.  

• The initial priorities of each train. These are determined by several factors such as the 

type of train, customer contract agreements and train load. 

• The upper and lower velocity limits for each train (which are dependent on the 

physical characteristics of the track segment and the train). 

• Segment lengths and the identification of single and double line track segments. 

• The times of any scheduled train stops. These stops may include loading/unloading, 

refuelling and crew changes. 
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Definition of Variables 

 

The set of trains is denoted by I={1,2,.....,m,m+1,.....,n} for which inbound trains are from 

1 to m and outbound are from m+1 to n. The variables used in the model are listed and 

described in this section. 

Let:       P P P=  { 1 2, } 

where: 

P P1 2=  set of single line tracks,  = set of double line tracks 

The integer decision variables for determining which train traverses a section first (also 

determines the position of conflict resolution) are given by: 

A
i m p P j m

ijp =
≤ ∈ ≤RST

   if inbound train  traverses track segment  before inbound train 
0  otherwise                                                                                                            
1 1  

B
i m p P j m

ijp =
≤ ∈RST

   if inbound train  traverses track segment  before outbound train >
0  otherwise                                                                                                              
1 1  

C
i m p P j m

ijp =
> ∈RST

   if outbound train  traverses track segment before outbound train >
0  otherwise                                                                                                                
1 1  

The arrival and departure time decision variables are as follows: 

      X i I q Qi
aq =  arrival time of train  at station ∈ ∈  

      X i I q Qi
dq  =  departure time of train  from station ∈ ∈  

      X i Ii
Oi  =  departure time of train  from its origin station  ∈  

      X i Ii
Di  =  arrival time of train at its destination station  ∈  

The input parameters are defined as follows: 

      h p Pp  =  minimum headway between two trains on segment ∈ 1 

      d p Pp =  length of segment ∈  

      Y i Ii
Oi  =  planned departure time of train  from origin station∈  

      Y i Ii
Di  =  planned arrival time of train  at destination station∈  

      v i I p Pi
p  =  minimum allowable velocity of train  on segment ∈ ∈  

      v i I p P
i

p  =  maximum achievable average velocity of train  on segment ∈ ∈  
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      W i Ii  =  initial priority of train (highest for passenger trains)∈  

       S i I q Qi
q =  scheduled stop time for train  at station ∈ ∈ . 

An illustration of the ordering of a single track used for the model in this paper is given 

in Figure 1 where the set of stations is represented by Q={1,2,....,NS} and here, track 

( - )p P2 2∈ . 

 

 

Model Derivation 

 

The objective function used in the model takes the following form: 
Min  

i
∑ Wi *(delay of train i I∈  at destination) + Train Operating Costs  (1) 

For the purposes of the solution procedure (namely Branch and Bound), the delay of train 

i I∈  is comprised of two parts. These are the current delay of train i I∈  at any point in 

time and a lower bound estimate of remaining overtake and crossing delay from this 

point (Higgins et al (6)). The model is subject to various constraints to ensure safe 

operation, enforce speed restrictions and permit stops. The following and overtake 

constraints for outbound trains i j I, ∈  are as follows: 
M C X X h

M C X X h
p P and i j m

ijp
i
aq

j
aq p

ijp
i
dq

j
dq p

* + +

* + +
    , >

+ +     1 1

1

≥

≥

UV|W|∀ ∈     (2)  

M C X X h

M C X X h
p P and i j m

ijp
j
aq

i
aq p

ijp
j
dq

i
dq p

*( - ) + +

*( - ) + +
    , >

+ +1

1

1 1

1

≥

≥

UV|W|∀ ∈     (3) 

 

and for inbound trains i j I, ∈ : 
M A X X h

M A X X h
p P and i j m

ijp
i
aq

j
aq p

ijp
i
dq

j
dq p

* + +

* + +
    ,

+ +

≥

≥

UV|W|∀ ∈ ≤
1 1

1      (4) 

M A X X h

M A X X h
p P and i j m

ijp
j
aq

i
aq p

ijp
j
dq

i
dq p

*( - ) + +

*( - ) + +
    ,

+ +

1

1 1 1
1

≥

≥

UV|W|∀ ∈ ≤     (5) 
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Equation (2) implies that if train j I∈  goes first, then train i I∈  must depart station 

q Q∈  after train j I∈  plus the minimum headway, and arrive at station (q+1)∈Q after 

train j∈ I  plus the headway. Equation (3) is similar except train i∈ I  goes first. Equations 

(4) and (5) are the same as equations (2) and (3), but for inbound trains. The constraints 

for the case when two trains approach each other are: 
h X X M B

h X X M B
p P i m j m

p
j
aq

i
dq ijp

p
i
aq

j
dq ijp

+ + *

+ + *( -
  ( , > )

+ +1 1

11

≤

≤

UV|W| ∀ ∈ ≤
)

,     (6) 

 

Equation (6) implies that if outbound train j I∈  goes first, inbound train i∈I  must 

depart station q∈Q after train j∈I  arrives plus a safety headway. Constant M is chosen 

large enough so that both equations in each crossing and overtake constraint are satisfied. 

Given the upper and lower velocities for each train on each segment, the upper and lower 

limits for traversal time of train i I∈  on segment p P∈ 1 are given by: 
d
v

X X
d
v

i m p P

d
v

X X
d
v

i m p P

p
i
p

i
aq

i
dq

p
i
p

p
i
p

i
aq

i
dq

p
i
p

≤ − ≤ ∈

≤ − ≤ ≤ ∈

+

+

      > ,  

      ,  

1

1

      (7) 

 

To stop trains from departing before their scheduled times and trains departing 

intermediate stations before they arrive, the following constraints are included. 
X Y

X S X
i I q Q

i
Oi

i
Oi

i
aq

i
q

i
dq

≥

+ ≤

UVW∀ ∈ ∈  ,         (8) 

 

The objective is to minimise equation (1) subject to constraints given by equations (2) - 

(8). 
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Solution Procedure 

 

The solution procedure described in this section is based on Branch and Bound (BB) and 

uses the depth first search for the resolution of conflicts. Each node in the BB tree 

represents a partially resolved schedule which is calculated by solving a nonliner 

program (ie. solve objective function (1) st (7,8) and the appropriate overtake or crossing 

constraints from equation (2)-(6)). The lower bound to the conflict delay costs of the 

remaining conflicts is calculated after the partial schedule is determined and is added to 

the cost of the partially resolved schedule. The BB technique used is described in full 

detail in Higgins et al (6). 

 

 

Model Testing 

 

The exact algorithm of sections 3 and 4 are implemented in FORTRAN on a 80486 PC. 

To solve the non-linear programs, GAMS/MINOS 5.2 (Brooks et al (7)) is accessed from 

the FORTRAN program. The model was tested on train schedules varying from 9 trains 

to 49 trains and was compared to a Branch and Bound Procedure with a lower bound 

calculated by relaxing the remaining conflict constraints. The method in this paper was 

able to find the optimal solution with up to 30 times less evaluations of the nonlinear 

program for most problems. For most problems the first upperbound was the optimal 

solution. The method using a lower bound calculated by relaxing the remaining conflicts 

required anything from a few hundred evaluations to several thousand. This is very 

important for a real life scheduling system as a solution would be required within a set 

time limit. The problem represented in Figure 2 contains 30 trains (53 conflicts) and was 

solved with 13 times fewer evaluations when the improved lower bound estimate is used. 
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PART II:   OPTIMUM LOCATION OF SIDINGS 

 

Past Research 

 

Since most of the work done in determining the best positions of sidings uses simulation, 

optimal strategies are not usually found. The limited literature which does consider 

optimality of siding positions only assumes simple train movements.  

 

Petersen and Taylor (8) investigated an analytical model to determine the required 

number and length of sidings for a schedule of passenger trains. The determination of the 

length of the siding was to obtain the maximum benefit of the acceleration and 

deceleration characteristics of the trains.  

 

An approach was taken by Kraft (9) to derive an analytical equation for determining the 

best position between two yards to put a siding. To construct the model, free running 

time between sidings, average running speed (including delays) and the number of trains 

per unit time was considered. The model cannot consider multiple sidings 

simultaneously. The equation may however be useful as an initial estimate. Mills et al 

(10) use simulation, analytic and heuristic techniques to investigate line capacity of a 

mine to port track system. The analytic model which determines the optimal number of 

equally spaced sidings is based on the expected crossing delay to a train. 

 

None of the above literature considers solving for optimal position of sidings without the 

assumption constant velocities and equally spaced sidings. The remainder of this paper 

considers the model formulation and solution to this problem. 
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Model Development 

 

In this section the analytical model is formulated and the main feature is the treatment of 

the track segment lengths (or siding positions) as variable. Some sidings will be located 

at fixed positions and are not considered as variable in the model. This occurs when the 

siding is already existing or if is to serve another purpose besides resolving conflicts. 

Scheduled stops will only be permitted at fixed sidings (stations). 

 

 

Assumptions 

 

The following assumptions are made specifically in conjunction with the siding location 

model: 

 

• Double line track sections are allowed and can be solved for optimum length but its 

position in a string of track segments cannot be moved. 

• Generally, only one train can occupy a siding at one time (unless specified) except for 

the origin and destination stations which are assumed to have infinite capacity. 

• Scheduled stops are only permitted on fixed sidings. 

• The train schedule is a cyclic schedule for which it is repeated on a daily or weekly 

basis. 

 

The following information (in addition to the information required in the first part of this 

paper) is required by the user: 
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• The upper velocities of each train at 1-km intervals of the track. These are used to 

approximate the upper velocities of trains on track segments as they are considered 

variable during the calculation procedure. 

• Any cost parameters such as cost of lateness per time and train operating costs. 

• Initial positions of the sidings. A good initial solution will ensure fast convergence. 

 

 

Definition of Variables 

 

The variables used in the siding location problem is the same as the first part of this paper 

except for the following differences. The sidings are represented by the set 

Q={1,2,......,NS} where NS is the total number of sidings in the track system. Let Q1 

represent the set of fixed stations (sidings) and Q2 represent the set of variable sidings.  

 

If the train schedule considered consists of daily and weekly trains then the cycle will be 

one week (ie. the schedule considered is one cycle). The scheduled stop time is defined 

as: 

         S i I q Qi
q = ∈ ∈ scheduled stop time for train  at station 1 

The upper velocity of a train on a discrete interval of track (used when calculating the 

upper velocities on a track segment) is given by 

       vel i I g
i
g = ∈upper velocity of train   at distance interval  on the track  

Assume the minimum headway is given by h. It does not however have to be constant for 

all trains and track segments since the minimum headway may be train dependent or 

determined by signal points. 

 

 

Formulation and Constraints 
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The objective function will generally take the form of minimising train delay costs and 

train operating costs. A dynamically prioritised delay criterion which allows the priority 

of each train to change from origin to destination as discussed in the model given in part 

I. Objectives involving minimising destination lateness of trains are found in Kraay et al 

(3) and Mills et al (5), while Petersen et al (11) minimises total travelling times. 

Although the model in this paper does not depend on the objective used, it is important 

however for the objective function to be convex to avoid the location of local optima. 

The overtake, crossing, upper velocity and scheduled stop constraints are the same as 

those given in part 1 of this paper. 

 

Since the track segments are of variable position and length (during the solution 

procedure), the upper velocities must be approximated. To estimate the upper velocities 

(maximum achievable velocities) it will be assumed the upper velocities on each one 

kilometre interval of the track corridor are known (or calculated using a train movement 

simulator). If one kilometre intervals are too fine then larger intervals may be used. Since 

the problem will be solved iteratively, the upper velocity of a train on a track segment is 

calculated by taking the average upper velocity of the intervals that lie in the track 

segment of the current solution. The upper velocity of train i I∈  on track segment p P∈  

is calculated by the following equations: 

v
vel

dh dl
i

p

i
g

g dl

dh

= − +
=
∑

1        (9) 

 

where 

dl dh= + =∑ ∑integer part of ( d   integer part of ( dk
k=1

p-1

k
k=1

p
) , )1  
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The expected arrival times at intermediate sidings are also dependent on the positions of 

sidings and are calculated by first determining the planned velocities on the track 

segments The planned velocities are calculated as follows: 

Ratio of fastest journey time to expected journey time RAi  is Y Y

vel

i
Di

i
Oi

i
gg

−

∑ 1  

The planned velocity of train i I∈  on track segment p P∈ , PV i
p, is v RA

i
p

i
 

 

From the planned velocity, the expected departures from each of the intermediate stations 

are calculated using equation (10). The expected arrival times will be the same as the 

expected departure times unless there are scheduled stops. 

Y Y d
PV

i Ii
dq

i
Oi

k
i
kk

q

= + ∈
=

−

∑
1

1

           train  is outbound 

Y Y d
PV

i Ii
dq

i
Oi

k
i
kk q

TRP

= + ∈
=
∑            train  is inbound     (10) 

where TRP is the number of track segments on the rail corridor. The fastest times which 

the trains travel from origin to destination are assumed to not affected by the siding 

positions so the expected arrivals and departures at the these sidings do not change. The 

last constraint is to ensure that the sum of the length of the track segments is equal to 

length of the entire track corridor ie. 

d TLEN i Qk i
k

i

= ∈
=

−

∑          1
1

1

        (11) 

where TLENi  is the length of the track system form the origin to the fixed siding i Q∈ 1. 

 

 

Solving the Model 

 

In this section a decomposition procedure is presented to obtain a solution to the above 

formulation. Solving the problem as formulated can be difficult due to the required 
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solution of three sets of variables (track segment lengths, arrival/ departure times and 

binary conflict resolution variables). The conflict resolution binary variables are solved 

using a branch and bound type procedure (or a heuristic) and require the sidings to be at 

fixed positions. The problem must be decomposed so that solutions can be obtained for 

the three sets of variables. 

 

The decomposition procedure proposed here is different to the Generalised Benders 

Decomposition (GBD) by Geofferon (12). The GBD partitions the model via the set of 

continuous variables and the set of integer variables. A more efficient way would be to 

partition the problem so that the structure of the problem could be exploited. This will 

allow a more efficient means of solving the sub-problems to be used. The model here will 

be decomposed into two sub models, one which is solved for track segment lengths and 

arrival and departure times, the other which is solved for the optimal train schedule given 

the track segment lengths. The process will iterate between the two sub-problems until 

there is no more improvement. This type of decomposition procedure is popular when 

solving complicated routing and scheduling problems. When one set of variables are 

fixed, the problem can sometimes be reduced to a well known form which can be easily 

solved using common procedures or heuristics. Two good examples are found in papers 

by Koskosidis et al (13) which looks at the soft time window constraints for the vehicle 

routing problem, and Sklar et al (14) which considers the aircraft scheduling problem. 

 

The complete model for this paper can be stated by equation (12): 

 

Min          Z f d k X i q X i q A B C i j pk
i
dq

i
aq ijp ijp ijp= ∀ ∀ ∀ ∀( , , , , , , , )    (12) 

  st   constraints (2-11) 
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where f(•) represents the non-linear (or linear) objective function of the variables defined 

in the first part of this paper. The model is decomposed to form models Z1 and Z2 . The 

model Z1 which is represented by equation (13) is solved to obtain the optimum track 

segment lengths subject to fixed conflict resolution variables A B Cijp ijp ijp, ,  (ie. fixed 

schedule). The model Z2  is solved to obtain the optimum schedule subject to fixed track 

segment lengths (ie normal train scheduling problem). Each model is solved using the 

output from the other model as initial values. 

Min      Z f d k X i q X i qk
i
dq

i
aq1 = ∀ ∀ ∀( , , , , )      (13) 

       st    constraints (7-11) 

 

Min        Z f X i q X i q A B C i j pi
dq

i
aq ijp ijp ijp2 = ∀ ∀ ∀( , , , , , , )    (14) 

         st    constraints  (2-9, 11)  

 

The upper velocities of model Z1 will be those of the latest solution of model Z2 . This is 

reasonable since to have the upper velocities as a function of track segment lengths dk  

(which is variable in model Z1) would require non-linear constraints. This may cause the 

solution to model Z1 to be slightly inaccurate for the first couple of iterations if there is a 

large change in siding positions. Results generated in the next section have indicated 

little effect on the convergence. 

 

The following variables will be defined for the decomposition algorithm to resemble the 

current stage of solution. 

d k P Zk
t = ∈length of track segment  after the t  iteration using model th

1 

X i I q Q Zi t
dq

, ,1
1= ∈ ∈departure time of train  from station  after the t  iteration using model th  

X i I q Q Zi t
aq

, ,1
1= ∈ ∈arrival time of train  at station  after the t  iteration using model th  
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B
A
C

t Z
ijp

t

ijp
t

ijp
t

th

U
V|
W|

 conflict resolution decision variables after the  iteration of model 2  

X i I q Q Zi t
dq

, ,2
2= ∈ ∈departure time of train  from station  after the t  iteration using model th  

X i I q Q Zi t
aq

, ,2
2= ∈ ∈arrival time of train  at station  after the t  iteration using model th  

v i I p Pi t
p

. = ∈ ∈upper velocity of train  on segment  for the t  iterationth  

 

The expected departure times are calculated using equation (10) and these constraints 

will be linear since the planned velocities are constant. This is because the upper 

velocities from model Z2  is used in the current iteration of model Z1. The initial track 

segment lengths dk
0  can be estimated using simulation techniques or by a simple 

inspection to see where the conflicts occur. Another method is to just assume equal track 

segment lengths for the initial estimates. If the purpose is to upgrade an existing track 

corridor, then the current positions of some existing sidings may be used for the initial 

estimate. 

 

The optimum siding positions are calculated using the following decomposition 

procedure: 

 

1. Given initial values d kk
0 ∀  solve the model Z2  to obtain Xi

dq
, ,1 2 , Xi

aq
, ,1 2 , Bijp

1 , Aijp
1 

and Cijp
1 ∀i j p, , . Solving Z2  is exactly the same as solving the normal train 

scheduling problem (Higgins et al (6) and Kraay et al (3)). Let t=1. 

2. Given Bijp
t , Aijp

t  and Cijp
t , solve the non-linear program Z1 for dk

t , Xi t
dq

, ,1  and 

Xi t
aq

, ,1 ,. This part is not a computational burden but the objective function is more 

complex due to dk
t  being variable. The form of this model makes it suitable for 

solution using a simplical decomposition procedure (Hohenbalken (15)). 
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3. Let t = t+1. Solve the problem Z2  given dk
t−1 for Xi t

dq
, ,2 , Xi t

aq
, ,2 , Bijp

t , Aijp
t  and Cijp

t  

using Xi t
dq

, ,1 , Xi t
aq

, ,1 , Bijp
t−1, Aijp

t−1  and Cijp
t−1 as initial values. The procedure 

terminates when the conflict resolution strategy does not change from iteration t-1 

to t. It is a major computational burden to solve for the integer variables using a 

branch and bound procedure. It is required for the initial solution of step 1., but if 

only a couple of conflict resolutions change as the positions of the sidings converge, 

then a much more efficient method of updating the conflict resolution strategy is 

necessary. A heuristic for this is described in the paper by Higgins et al (16). Goto 

step 2. 

 

Model Testing 

 

The examples considered here contain 7 trains and 6 sidings, 4 of which are movable. 

The examples were chosen to illustrate the time savings of having sidings at their optimal 

positions compared to their current positions. The objective function chosen for examples 

is minimum tardiness plus fuel cost and is given in equation (16). The fuel consumption 

function is the same as that used by Mills et al (5). For the two examples presented here, 

the restriction of one train per siding is relaxed. The lateness at destinations (second term 

of equation (16)) for the initial and optimal solution (both examples) are shown in Table 

1(a) with the track segment lengths given in Table 1(b). Figure 3a represents the initial 

resolved train graph for the first example. By inspection of this train graph, it appears that 

the sidings are at quite reasonable positions with respect to the conflicts. The only real 

indication is that siding 2 could be closer to the inbound origin station. When the sidings 

are at optimum positions as shown in Figure 3b, considerable time savings are obtained 

for the trains and they are kept closer to schedule throughout the journey. The second and 

fourth columns of Table 1(a) indicate the time saved for trains when sidings are at 

optimal positions. More than an hour of delay has been cut for all trains. 
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The first example required only 2 iterations (terminated at t=2) of the decomposition 

procedure to achieve the optimal solution. Only one conflict required changing from the 

first iteration to the second. The original track segment lengths dk
0  indicate that a good 

initial solution will ensure fast convergence. The initial positions of the track segments in 

the second example are a lot poorer than in the first. This example was set up so that most 

of the train interactions are toward the mid point of the journey where there are fewer 

sidings. The outbound trains suffer heavy delays due to this and the optimal solution 

relocates the sidings towards the middle of the train graph. Referring to the third and fifth 

columns of Table 1(a), there has been a reduction in delay for many trains with the 

average delay being significantly reduced.  

 

 

MODEL LIMITATIONS 

 

The models in both parts of this paper have some limitations as far as real life 

applications are concerned. While the emphasis of part I was to allow optimal solutions 

to real life problems to be found, it does not allow random delay events. Instead the risk 

delay of a given resolved schedule can be calculated separately by a model described in 

Higgins et al (17) The model takes into account the risk delay due to terminal and 

stoppage delays, train related delays and track related delays.  

 

Some trains will have different characteristics such as number of wagons on a given day 

and number of locomotives used. The upper achievable velocity is easily adjusted to cater 

for such train differences. At this stage the models have been tested using a real life 

problem which consists of a single line track of 120 kilometres with 13 sidings and a 

daily density of 30 trains. Most types of objective functions which have been proposed in 
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the past can be accommodated using the models. However, the inclusion of other 

variables such as delay risk would not be possible. 

 

 

CONCLUSIONS 

 

This paper has presented an on-line model for the scheduling of trains on a single line 

track and a planning tool for determining the optimal positioning of sidings. The on-line 

model allows the priority of a train to change from origin to station resulting in a more 

reliable system. This is a more realistic interpretation of how the train dispatcher would 

consider the rail network. Conflicts are resolved upon their current priorities which are 

dependent on the future delays for each train. 

 

The on-line model will be useful to train dispatchers for generating more reliable train 

schedules. Optimum schedules will be generated quickly and trains will be kept on 

schedule with respect to future delays. The results have demonstrated significant 

computation time improvements especially for larger problems which involve tight 

schedules.  

 

For the siding location problem, a decomposition procedure was used iteratively to solve 

for the best siding positions and corresponding resolved schedule. Results of the model 

have shown much improvement in delays to trains when the sidings are at optimal 

positions. If using this model to determine the positions of sidings only reduces the 

overall delay by a small percentage (while keeping the train costs uniform) then the long 

term benefits may be large. 
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Positioning of sidings is one aspect of trying to optimise freight rail transport. A larger 

concern however is the upgrading of existing track. It is important to know the effects of 

lateness and reliability of schedules when upgrading the existing track corridor. Besides 

the delay occurred when a train waits at a siding for another train to pass, there are other 

delays that must be considered. These delays are categorised as risk delays and are 

caused by maintenance, any train failure or environment problems. A prime interest for 

upgrading existing track is the knowledge of this risk delay while the track is in its 

current state and an estimate of this delay if certain upgrading was carried out. Research 

is continuing by the authors on the development of a model to estimate the risk delay to a 

system and to identify which sections of track contribute the most risk. 
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TABLE 1a Comparison of lateness at destinations 
 Destination lateness for current solution 

(hrs) 
Destination lateness for optimal 
solution (hrs) 

Train Example 1 Example 2 Example 1 Example 2 
1 0.01 0.00 0.00 0.00 
2 1.62 0.46 1.01 0.46 
3 1.86 0.38 1.58 0.22 
4 0.00 0.21 0.00 0.00 
5 0.38 0.42 0.33 0.55 
6 1.15 1.07 1.08 0.21 
7 1.09 0.40 1.07 0.40 
All Trains 6.11 2.94 5.07 1.84 

 

 

TABLE 1b   Comparison of original and optimal track segment lengths 
Track segment k Original length (dk

0  km) Optimal length (km) 

  Example 1 Example 2 
1 20.24 8.18 23.23 
2 28.86 35.40 20.75 
3 28.47 35.40 22.25 
4 43.14 43.52 24.50 
5 25.26 23.46 55.23 
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FIGURE 1   Sample of a network showing the single and double track segments 
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FIGURE 2   Optimal solution of 30 train problem 
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TABLE 1a Comparison of lateness at destinations 
 
 

TABLE 1b   Comparison of original and optimal track segment lengths 
 
 

FIGURE 1   Sample of a network showing the single and double track segments 

 

FIGURE 2   Optimal solution of 30 train problem 
 
 

FIGURE 3   Optimal schedule given current siding positions (left), given optimal 

siding positions (right) 
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FIGURE 3   Optimal schedule given current siding positions (left), given optimal 

siding positions (right) 

 

 


