21,259 research outputs found

    Variational approach for learning Markov processes from time series data

    Full text link
    Inference, prediction and control of complex dynamical systems from time series is important in many areas, including financial markets, power grid management, climate and weather modeling, or molecular dynamics. The analysis of such highly nonlinear dynamical systems is facilitated by the fact that we can often find a (generally nonlinear) transformation of the system coordinates to features in which the dynamics can be excellently approximated by a linear Markovian model. Moreover, the large number of system variables often change collectively on large time- and length-scales, facilitating a low-dimensional analysis in feature space. In this paper, we introduce a variational approach for Markov processes (VAMP) that allows us to find optimal feature mappings and optimal Markovian models of the dynamics from given time series data. The key insight is that the best linear model can be obtained from the top singular components of the Koopman operator. This leads to the definition of a family of score functions called VAMP-r which can be calculated from data, and can be employed to optimize a Markovian model. In addition, based on the relationship between the variational scores and approximation errors of Koopman operators, we propose a new VAMP-E score, which can be applied to cross-validation for hyper-parameter optimization and model selection in VAMP. VAMP is valid for both reversible and nonreversible processes and for stationary and non-stationary processes or realizations

    Understanding Complex Systems: From Networks to Optimal Higher-Order Models

    Full text link
    To better understand the structure and function of complex systems, researchers often represent direct interactions between components in complex systems with networks, assuming that indirect influence between distant components can be modelled by paths. Such network models assume that actual paths are memoryless. That is, the way a path continues as it passes through a node does not depend on where it came from. Recent studies of data on actual paths in complex systems question this assumption and instead indicate that memory in paths does have considerable impact on central methods in network science. A growing research community working with so-called higher-order network models addresses this issue, seeking to take advantage of information that conventional network representations disregard. Here we summarise the progress in this area and outline remaining challenges calling for more research.Comment: 8 pages, 4 figure

    Overcoming non-Markovian dephasing in single photon sources through post-selection

    Get PDF
    We study the effects of realistic dephasing environments on a pair of solid-state single-photon sources in the context of the Hong-Ou-Mandel dip. By means of solutions for the Markovian or exact non-Markovian dephasing dynamics of the sources, we show that the resulting loss of visibility depends crucially on the timing of photon detection events. Our results demonstrate that the effective visibility can be improved via temporal post-selection, and also that time-resolved interference can be a useful probe of the interaction between the emitter and its host environment.Comment: 5 pages, 2 figures, published version, title changed, references update

    Markovian Testing Equivalence and Exponentially Timed Internal Actions

    Full text link
    In the theory of testing for Markovian processes developed so far, exponentially timed internal actions are not admitted within processes. When present, these actions cannot be abstracted away, because their execution takes a nonzero amount of time and hence can be observed. On the other hand, they must be carefully taken into account, in order not to equate processes that are distinguishable from a timing viewpoint. In this paper, we recast the definition of Markovian testing equivalence in the framework of a Markovian process calculus including exponentially timed internal actions. Then, we show that the resulting behavioral equivalence is a congruence, has a sound and complete axiomatization, has a modal logic characterization, and can be decided in polynomial time

    Optimal arbitrage under model uncertainty

    Full text link
    In an equity market model with "Knightian" uncertainty regarding the relative risk and covariance structure of its assets, we characterize in several ways the highest return relative to the market that can be achieved using nonanticipative investment rules over a given time horizon, and under any admissible configuration of model parameters that might materialize. One characterization is in terms of the smallest positive supersolution to a fully nonlinear parabolic partial differential equation of the Hamilton--Jacobi--Bellman type. Under appropriate conditions, this smallest supersolution is the value function of an associated stochastic control problem, namely, the maximal probability with which an auxiliary multidimensional diffusion process, controlled in a manner which affects both its drift and covariance structures, stays in the interior of the positive orthant through the end of the time-horizon. This value function is also characterized in terms of a stochastic game, and can be used to generate an investment rule that realizes such best possible outperformance of the market.Comment: Published in at http://dx.doi.org/10.1214/10-AAP755 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • 

    corecore