To better understand the structure and function of complex systems,
researchers often represent direct interactions between components in complex
systems with networks, assuming that indirect influence between distant
components can be modelled by paths. Such network models assume that actual
paths are memoryless. That is, the way a path continues as it passes through a
node does not depend on where it came from. Recent studies of data on actual
paths in complex systems question this assumption and instead indicate that
memory in paths does have considerable impact on central methods in network
science. A growing research community working with so-called higher-order
network models addresses this issue, seeking to take advantage of information
that conventional network representations disregard. Here we summarise the
progress in this area and outline remaining challenges calling for more
research.Comment: 8 pages, 4 figure