2 research outputs found

    A Model-Driven Framework to Support Games Development: An Application to Serious Games

    Get PDF
    Model Driven Engineering (MDE) is a software development approach which focuses on the creation of models to represent a domain with the aim of automatically generating software artefact using a set of software tools. This approach enables practitioners to produce a variation of software in by reusing the concepts in the domain model without worrying about the technical intricacies of software development. Therefore, this approach can help to increases productivity and it makes software design easier for the practitioners. The application of this approach into games development domain presents an interesting proposition and could help to simplify production of computer games.Computer games are interactive entertainment software designed and developed to engage users to participate in goal-directed play. Many find computer gaming to be persuasive and engaging, and they believe that through the application of game design and game technology in non-entertainment domains can create a positive impact. Computer games designed primarily for non-entertainment purpose are generally known as serious games. The development of games software, in no relation to the intended purpose of it, is technically complex and it requires specialist skills and knowledge. This is the major barrier that hinders domain experts who intend to apply computer gaming into their respective domains. Much research is already underway to address this challenge, whereby many of which have chosen to use readily available commercial-off-the-shelf games while others have attempted to develop serious games in-house or collaboratively with industry expertise. However, these approaches present issues including appropriateness of the serious game content and its activities, reliability of serious games developed and the financial cost involved. The MDE approach promises new hopes to the domain experts, especially to those with little or no technical knowledge who intend produce their own computer games. Using this approach, the technical aspects of games development can be hidden from the domain experts through the automated generation of software artefact. This simplifies the production of computer games and could provide the necessary support to help non-technical domain experts to realise their vision on serious gaming.This thesis investigates the development of a model-driven approach and technologies to aid non-technical domain experts in computer games production. It presents a novel model-driven games development framework designed to aid non-technical domain experts in producing computer games. A prototype based on the model-driven games development framework has been implemented to demonstrate the applicability of this solution. The framework has been validated through the prototypical implementations and these have been evaluated. A case study has been conducted to present a use-case scenario and to examine if this approach can help non-technical domain experts in producing computer games and also to find out if it would lower the barrier towards adoption of game-based learning as an alternative teaching and learning approach.The work in this thesis contributes to the area of software engineering in games. The contributions made in this research includes (1) a blueprint for model-driven engineering for games development, (2) a reusable formalised approach to document computer game design and (3) a model of game software that is independent of implementation platform

    State-of-the-Art Model Driven Game Development: A Survey of Technological Solutions for Game-Based Learning

    Get PDF
    Game-based learning harnesses the advantages of computer games technology to create a fun, motivating and interactive virtual learning environment that promotes problem-based experiential learning. Such an approach is advocated by many commentators to provide an enhanced learning experience than those based on traditional didactic methods. However, the adoption of such a seductive learning method engenders a range of technical, educational and pedagogical challenges, including: (i) how to enable domain experts - with little computer games development skills – to plan, develop and update their teaching material without going through endless and laborious iterative cycles of software and content development and/or adaptation; (ii) how to choose the right mix of entertainment and game playing to deliver the required educational and pedagogical lesson/teaching material; and (iii) how to reuse existing games software frameworks and associated editing environments for game-based learning. Much research is already underway at addressing the stated challenges; however, these approaches do not address the key challenge of facilitating the planning and development of teaching material with the right mix of pedagogical elements, educational components and fun. Thus, this study aims to investigate the use of model-driven software engineering approaches to facilitate non-technical domain experts (teachers) to plan, develop and maintain game-based learning resources regardless of the intricacies of the game engine/environment (platform) used. This article investigates the state-of-the-art in model-driven game development to provide a summary of developments in game design languages, game software modelling languages, game models, game software models, model-driven game frameworks, game software frameworks, model-driven engineering tools and assistive user interfaces. The findings from this survey will prove a useful guide for future development of high-level educational game creation tools for game-based learning
    corecore