3,406 research outputs found

    Fast and Precise Symbolic Analysis of Concurrency Bugs in Device Drivers

    Get PDF
    © 2015 IEEE.Concurrency errors, such as data races, make device drivers notoriously hard to develop and debug without automated tool support. We present Whoop, a new automated approach that statically analyzes drivers for data races. Whoop is empowered by symbolic pairwise lockset analysis, a novel analysis that can soundly detect all potential races in a driver. Our analysis avoids reasoning about thread interleavings and thus scales well. Exploiting the race-freedom guarantees provided by Whoop, we achieve a sound partial-order reduction that significantly accelerates Corral, an industrial-strength bug-finder for concurrent programs. Using the combination of Whoop and Corral, we analyzed 16 drivers from the Linux 4.0 kernel, achieving 1.5 - 20× speedups over standalone Corral

    Automatic Verification of Message-Based Device Drivers

    Full text link
    We develop a practical solution to the problem of automatic verification of the interface between device drivers and the OS. Our solution relies on a combination of improved driver architecture and verification tools. It supports drivers written in C and can be implemented in any existing OS, which sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation shows that this methodology amplifies the power of existing verification tools in detecting driver bugs, making it possible to verify properties beyond the reach of traditional techniques.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Modular Verification of Interrupt-Driven Software

    Full text link
    Interrupts have been widely used in safety-critical computer systems to handle outside stimuli and interact with the hardware, but reasoning about interrupt-driven software remains a difficult task. Although a number of static verification techniques have been proposed for interrupt-driven software, they often rely on constructing a monolithic verification model. Furthermore, they do not precisely capture the complete execution semantics of interrupts such as nested invocations of interrupt handlers. To overcome these limitations, we propose an abstract interpretation framework for static verification of interrupt-driven software that first analyzes each interrupt handler in isolation as if it were a sequential program, and then propagates the result to other interrupt handlers. This iterative process continues until results from all interrupt handlers reach a fixed point. Since our method never constructs the global model, it avoids the up-front blowup in model construction that hampers existing, non-modular, verification techniques. We have evaluated our method on 35 interrupt-driven applications with a total of 22,541 lines of code. Our results show the method is able to quickly and more accurately analyze the behavior of interrupts.Comment: preprint of the ASE 2017 pape

    Regression-free Synthesis for Concurrency

    Get PDF
    While fixing concurrency bugs, program repair algorithms may introduce new concurrency bugs. We present an algorithm that avoids such regressions. The solution space is given by a set of program transformations we consider in for repair process. These include reordering of instructions within a thread and inserting atomic sections. The new algorithm learns a constraint on the space of candidate solutions, from both positive examples (error-free traces) and counterexamples (error traces). From each counterexample, the algorithm learns a constraint necessary to remove the errors. From each positive examples, it learns a constraint that is necessary in order to prevent the repair from turning the trace into an error trace. We implemented the algorithm and evaluated it on simplified Linux device drivers with known bugs.Comment: for source code see https://github.com/thorstent/ConRepai

    Automatic Verification of Data Race Freedom in Device Drivers

    Get PDF
    Device drivers are notoriously hard to develop and even harder to debug. They are typically prone to many serious issues such as data races. In this paper, we present static pair-wise lock set analysis, a novel sound verification technique for proving data race freedom in device drivers. Our approach not only avoids reasoning about thread interleavings, but also allows the reuse of existing successful sequential verification techniques

    Thread-Modular Static Analysis for Relaxed Memory Models

    Full text link
    We propose a memory-model-aware static program analysis method for accurately analyzing the behavior of concurrent software running on processors with weak consistency models such as x86-TSO, SPARC-PSO, and SPARC-RMO. At the center of our method is a unified framework for deciding the feasibility of inter-thread interferences to avoid propagating spurious data flows during static analysis and thus boost the performance of the static analyzer. We formulate the checking of interference feasibility as a set of Datalog rules which are both efficiently solvable and general enough to capture a range of hardware-level memory models. Compared to existing techniques, our method can significantly reduce the number of bogus alarms as well as unsound proofs. We implemented the method and evaluated it on a large set of multithreaded C programs. Our experiments showthe method significantly outperforms state-of-the-art techniques in terms of accuracy with only moderate run-time overhead.Comment: revised version of the ESEC/FSE 2017 pape

    Behavioural analysis of an I2C Linux driver

    Get PDF
    We present an analysis of the behaviour of an I2C Linuxdriver, by means of model checking with the mCRL2 toolset and static analysis with UNO.We have reverse engineered the source code to obtain the structure and interactions of the driver. Based on these results, we have semi-automatically created an mCRL2 model of the behaviour of the driver, on which we have checked mutual exclusion properties. This revealed non-trivial potential errors, like unprotected usage of shared memory variables due to inconsistent locking and disabling/enabling of interrupts. We also applied UNO on the instrumented source code and were able to find the same errors. These defects were confirmed by the developers

    Evaluating software verification systems: benchmarks and competitions

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 14171 “Evaluating Software Verification Systems: Benchmarks and Competitions”. The seminar brought together a large group of current and future competition organizers and participants, benchmark maintainers, as well as practitioners and researchers interested in the topic. The seminar was conducted as a highly interactive event, with a wide spectrum of contributions from participants, including talks, tutorials, posters, tool demonstrations, hands-on sessions, and a live competition

    Effective Verification for Low-Level Software with Competing Interrupts

    Get PDF
    Interrupt-driven software is difficult to test and debug, especially when interrupts can be nested and subject to priorities. Interrupts can arrive at arbitrary times, leading to an exponential blow-up in the number of cases to consider. We present a new formal approach to verifying interrupt-driven software based on symbolic execution. The approach leverages recent advances in the encoding of the execution traces of interacting, concurrent threads. We assess the performance of our method on benchmarks drawn from embedded systems code and device drivers, and experimentally compare it to conventional approaches that use source-to-source transformations. Our results show that our method significantly outperforms these techniques. To the best of our knowledge, our work is the first to demonstrate effective verification of low-level embedded software with nested interrupt
    • …
    corecore