4,331 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    Data driven safe vehicle routing analytics: a differential evolution algorithm to reduce CO2 emissions and hazardous risks

    Get PDF
    Contemporary vehicle routing requires ubiquitous computing and massive data in order to deal with the three aspects of transportation such as operations, planning and safety. Out of the three aspects, safety is the most vital and this study refers safety as the reduction of CO2 emissions and hazardous risks. Hence, this paper presents a data driven multi-objective differential evolution (MODE) algorithm to solve the safe capacitated vehicle routing problems (CVRP) by minimizing the greenhouse gas emissions and hazardous risk. The proposed data driven MODE is tested using benchmark instances associated with real time data which have predefined load for each of the vehicle travelling on a specific route and the total capacity summed up from the customers cannot exceed the stated load. Pareto fronts are generated as the solution to this multi-objective problem. Computational results proved the viability of the data driven MODE algorithm to solve the multi-objective safe CVRP with a certain trade-off to achieve an efficient solution. Overall the study suggests 5% increment in cost function is essential to reduce the risk factors. The major contributions of this paper are to develop a multi-objective model for a safe vehicle routing and propose a multi-objective differential evolution (MODE) algorithm that can handle structured and unstructured data to solve the safe capacitated vehicle routing problem

    A Bi-Objective Approach to Evaluate Highway Routing and Regulatory Strategies for Hazardous Materials Transportation

    Get PDF
    Hazardous materials (hazmat) transportation is of concern to policymakers because of the serious safety, health, and environmental risks associated with the release of hazmat. One effective approach to minimize risks associated with hazmat transport is the prohibition of hazmat transportation on higher risk links that either pose safety hazards or increased exposure by traversing densely populated areas. Because of high risk, there are multiple stakeholders involved in hazmat transportation. While shippers and carriers are directly involved in making routing decisions, regulatory agencies influence this decision by imposing routing restrictions. In this paper, we apply a bi-objective shortest path problem to evaluate routing and regulation plans for hazmat transportation. We characterize the cost objective as the shortest path between an origin and a destination. The risk objective is to minimize the risk of exposure by restricting the link with the highest risk on the best available path from an origin to a destination. We formulate the bi-objective model and apply it to a test network. Solutions consider multiple origin-destination pairs and present a non-dominated frontier to establish routing and regulatory strategies for hazmat transportation

    The Relationship between Vehicle Routing & Scheduling and Green Logistics - A Literature Survey

    Get PDF
    The basic Vehicle Routing and Scheduling Problem (VRSP) is described followed by an outline of solution approaches. Different variations of the basic VRSP are examined that involve the consideration of additional constraints or other changes in the structure of the appropriate model. An introduction is provided to Green Logistics issues that are relevant to vehicle routing and scheduling including discussion of the environmental objectives that should be considered. Particular consideration is given to VRSP models that relate to environmental issues including the timedependent VRSP, the transportation of hazardous materials and dynamic VRSP models. Finally some conclusions are drawn about further research needs in this area and the relation to road pricing

    Hazardous Materials Transportation with Multiple Objectives: A Case Study in Taiwan

    Get PDF
    Hazardous material (hazmat) transportation has been an important issue for handling hazardous materials, such as gases and chemical liquids. In the past, researchers have made great efforts to develop policies and route planning methods for hazmat transportation problems. In 2014, Kaohsiung City in Taiwan suffered a gas pipeline explosion at midnight; 32 people were killed, and hundreds of people were injured. After the incident, policies and routing strategies for hazardous materials (hazmat) transportation in Kaohsiung were initiated to avoid pipeline transportation. Although methodologies for hazmat transportation have been proposed and implemented to minimize potential risks, multiple objectives need to be considered in the process to facilitate hazmat transportation in Taiwan. In order to consider both government and operators’ aspects, a multi-objective formulation for the hazmat problem is proposed and a compromise programming method is applied to solve the problem with two objectives: travel cost and risk. The path risk is defined based on risk assessment indexes, such as road characteristics, population distribution, link length, hazardous material characteristics, and accident rates. An aggregate risk indicator is proposed for roadway segments. The compromise programming approach is developed from the concept of compromise decision and the main idea is to search the compromise solution closest to the ideal solution. The proposed method is applied to Kaohsiung City, Taiwan. The results show that two conflicting objectives keep making trade-offs between each other until they finally reach a compromise solution

    Soft computing for hazardous waste routing in Malaysia: a review

    Get PDF
    Nowadays, a significant number of researchers are focusing on utilizing soft computing approaches to address the issue of scheduling in applications concerned with hazardous waste management. In Malaysia, there is thoughtless awareness of the management of hazardous waste, even though the production of wastes in hazardous domains at the industrial and domestic levels has been rising lately. According to previous research findings, the location routing problem (LRP) can be designated as one of the models closer to the actual situation, evaluating the most suitable and optimal location for establishing facilities and utilizing transportation for pick-up and distribution. Recent studies have focused on enhancing the LRP model, and its methodologies approach to solve the waste management problem in hazardous domains. In this paper, a comprehensive review of the better promising and practicable mathematical model of LRP and its methodology approach is discussed, as well as an analysis of the publishing pattern and the trend of research over the preceding five years and more, as retrieved from the web of science (WoS) database. In conclusion, this research is significant in ensuring the effectiveness of reliable mathematical model development and suitable methodologies in the future for solving hazardous waste management problems
    corecore