14 research outputs found

    Effects of sampling skewness of the importance-weighted risk estimator on model selection

    Full text link
    Importance-weighting is a popular and well-researched technique for dealing with sample selection bias and covariate shift. It has desirable characteristics such as unbiasedness, consistency and low computational complexity. However, weighting can have a detrimental effect on an estimator as well. In this work, we empirically show that the sampling distribution of an importance-weighted estimator can be skewed. For sample selection bias settings, and for small sample sizes, the importance-weighted risk estimator produces overestimates for datasets in the body of the sampling distribution, i.e. the majority of cases, and large underestimates for data sets in the tail of the sampling distribution. These over- and underestimates of the risk lead to suboptimal regularization parameters when used for importance-weighted validation.Comment: Conference paper, 6 pages, 5 figure

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Guiding new physics searches with unsupervised learning

    Get PDF
    We propose a new scientific application of unsupervised learning techniques to boost our ability to search for new phenomena in data, by detecting discrepancies between two datasets. These could be, for example, a simulated standard-model background, and an observed dataset containing a potential hidden signal of New Physics. We build a statistical test upon a test statistic which measures deviations between two samples, using a Nearest Neighbors approach to estimate the local ratio of the density of points. The test is model-independent and non-parametric, requiring no knowledge of the shape of the underlying distributions, and it does not bin the data, thus retaining full information from the multidimensional feature space. As a proof-of-concept, we apply our method to synthetic Gaussian data, and to a simulated dark matter signal at the Large Hadron Collider. Even in the case where the background can not be simulated accurately enough to claim discovery, the technique is a powerful tool to identify regions of interest for further study

    Towards a Unified Analysis of Kernel-based Methods Under Covariate Shift

    Full text link
    Covariate shift occurs prevalently in practice, where the input distributions of the source and target data are substantially different. Despite its practical importance in various learning problems, most of the existing methods only focus on some specific learning tasks and are not well validated theoretically and numerically. To tackle this problem, we propose a unified analysis of general nonparametric methods in a reproducing kernel Hilbert space (RKHS) under covariate shift. Our theoretical results are established for a general loss belonging to a rich loss function family, which includes many commonly used methods as special cases, such as mean regression, quantile regression, likelihood-based classification, and margin-based classification. Two types of covariate shift problems are the focus of this paper and the sharp convergence rates are established for a general loss function to provide a unified theoretical analysis, which concurs with the optimal results in literature where the squared loss is used. Extensive numerical studies on synthetic and real examples confirm our theoretical findings and further illustrate the effectiveness of our proposed method.Comment: Poster to appear in Thirty-seventh Conference on Neural Information Processing System
    corecore