16 research outputs found

    Model Predictive Control for Building Active Demand Response Systems

    Get PDF
    The Active Demand Response (ADR), integrated with the distributed energy generation and storage systems, is the most common strategy for the optimization of energy consumption and indoor comfort in buildings, considering the energy availability and the balancing of the energy production from renewable sources. In the paper an overview of basic requirements and applications of ADR management is presented. Specifically, the model predictive control (MPC) adopted in several applications as optimal control strategy in the ADR buildings context is analysed. Finally the research experience of the authors in this context is described

    Power System Integration of Flexible Demand in the Low Voltage Network

    Get PDF

    Revisión bibliográfica de sistemas de control para gestión de micro-redes de energía

    Get PDF
    El presente artículo presenta una revisión de la literatura la cual está enfocada en determinar el grado de importancia que tienen los sistemas de control para la gestión energética en micro-redes. Se describen las principales razones por las que se lleva a cabo el proceso de migración de plantas de uso de combustible fósil hacia plantas industriales de energía renovables, enfatizando en algunos tipos de energía renovable existentes.  Adicionalmente, se resumen las técnicas de control existentes, entre las que figuran el control óptimo y jerárquico, para las micro-redes. Asimismo, se esbozan las principales tecnologías utilizadas en la actualidad para la implementación de sistemas  de control predictivo basado en modelos (MPC, siglas en inglés) y el control económico predictivo basado en modelos (EMPC siglas en inglés). En este último, se realiza un análisis en términos económicos en función del coste

    Review of energy system flexibility measures to enable high levels of variable renewable electricity

    Get PDF
    The paper reviews different approaches, technologies, and strategies to manage large-scale schemes of variable renewable electricity such as solar and wind power. We consider both supply and demand side measures. In addition to presenting energy system flexibility measures, their importance to renewable electricity is discussed. The flexibility measures available range from traditional ones such as grid extension or pumped hydro storage to more advanced strategies such as demand side management and demand side linked approaches, e.g. the use of electric vehicles for storing excess electricity, but also providing grid support services. Advanced batteries may offer new solutions in the future, though the high costs associated with batteries may restrict their use to smaller scale applications. Different “P2Y”-type of strategies, where P stands for surplus renewable power and Y for the energy form or energy service to which this excess in converted to, e.g. thermal energy, hydrogen, gas or mobility are receiving much attention as potential flexibility solutions, making use of the energy system as a whole. To “functionalize” or to assess the value of the various energy system flexibility measures, these need often be put into an electricity/energy market or utility service context. Summarizing, the outlook for managing large amounts of RE power in terms of options available seems to be promising.Peer reviewe

    Indirect control of flexible demand for power system applications.

    Get PDF

    Toward optimal operation of multienergy home-microgrids for power balancing in distribution networks: a model predictive control approach

    Get PDF
    The energy policy objectives of the German government regarding renewable energy sources and energy efficiency will lead to a significantly increase in the share of photovoltaics, storage systems, CHP plants, and heat pumps, especially at the distribution grid level. In the future, inside a household, such systems must be coordinated in such a way that they can respond to variable network conditions as a single flexible unit. This dissertation defines home-microgrid as a residential building with integrated distributed energy resources, and follows a bottom-up approach, based on the cellular approach, which aims at improving local balancing in low-voltage grids by using the flexibilities of home-microgrids. For this purpose, the dissertation develops optimization-based strategies for the coordination of multienergy home-microgrids, focusing on the use of model predictive control. The main core of the work is the formulation of the underlying optimization problems and the investigation of coordination strategies for interconnected home-microgrids. In this context, the work presents the use of the dual decomposition and the alternating direction method of multipliers for hierarchical-distributed coordination strategies. Finally, this dissertation introduces a framework for the co-simulation of electrical networks with penetration of multienergy home-microgrids
    corecore