3 research outputs found

    Model Predictive Control for Connected Hybrid Electric Vehicles

    Get PDF
    This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc.) are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method

    Model predictive control for multimode power-split hybrid electric vehicles: Parametric internal model with integrated mode switch and variable meshing losses

    Get PDF
    Model predictive control (MPC) is one of the most promising energy management strategies for hybrid electric vehicles. However, owing to constructive complexity, the multimode power-split powertrain requires dedicated mathematical tools to model the mode switch and transmission power losses within the internal model of the controller. Thus, the transmission losses are usually neglected and the mode switch is optimised through offline simulations. This paper proposes an MPC internal model relying on a parametric approach available in the literature, which provides a unique formulation for modelling any power-split transmission and assesses the transmission meshing losses. The objectives, which cover a gap in the literature, are: 1) to integrate the discrete problem of the mode switch in a continuous formulation of the internal model; 2) to compare MPC internal models with different complexity, and evaluate how the consideration of meshing losses and efficiency of the electric machines affect the controller performance. The results on a case study vehicle, i.e., the Chevrolet Volt, suggest that a simplified internal model deteriorates the fuel consumption performance by less than 2 %, while the integrated mode switch is comparable to the offline strategy
    corecore